Skip to main content
Log in

PPARγ activation by baicalin suppresses NF-κB-mediated inflammation in aged rat kidney

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Baicalin, a herb-derived flavonoid compound, has beneficial activities, including the modulation of oxidative stress and inflammation. Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor that plays an important role in regulating nuclear factor-κB (NF-κB)-induced age-related inflammation. We investigated the anti-inflammatory action of baicalin, which depends on its ability to activate PPARγ, and subsequently to suppress NF-κB. We examined baicalin-treated kidney tissue from 24-month-old Fischer 344 aged rats (10 or 20 mg/kg/day for 10 days) and baicalin-fed mice (10 mg/kg/day for 3 days) for in vivo investigations, and used endothelial YPEN-1 cells for in vitro studies. In the baicalin-fed aged rats, there was a marked enhancement of both nuclear protein levels and DNA binding activity of PPARγ, and a decreased expression of NF-κB target genes (VCAM-1, IL-1β, and IL-6) compared with non-baicalin-fed aged rats. Furthermore, to confirm the anti-inflammatory action of PPARγ activated by baicalin, we used lipopolysaccharide (LPS)-treated cells and mice. The results showed that baicalin induced PPARγ-selective activation in YPEN-1 cells, and that the effects of baicalin were blocked by the PPARγ receptor antagonist, GW9662. In addition, baicalin treatment prevented RS generation, NF-κB activation and the expression of pro-inflammatory genes, whereas it increased PPARγ expression in LPS-treated cells and mouse kidney. Our data suggest that baicalin-induced PPARγ expression reduced age-related inflammation through blocking pro-inflammatory NF-κB activation. These results indicate that baicalin is a novel PPARγ activator and that this agent may have the potential to minimize inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EMSA:

Electrophoretic mobility shift assay

H2DCF-DA:

2′,7′-Dichlorofluorescin diacetate

IL-1β:

Interukin-1β

iNOS:

Inducible nitric oxide synthase

I.P.:

Intraperitoneal

NF-κB:

Nuclear factor-κB

PPARγ:

Peroxisome proliferator-activated receptor-γ

PPRE:

Peroxisome proliferator response element

RS:

Reactive species

RXR:

Retinoid X receptor

SPF:

Specific pathogen free

TNF-α:

Tumor necrosis factor-α

TZD:

Thiazolidinedione

VCAM-1:

Vascular cell adhesion protein-1

References

  • Amoruso A, Gunella G, Rondano E, Bardelli C, Fresu LG, Ferrero V, Ribichini F, Vassanelli C, Brunelleschi S (2009) Tobacco smoke affects expression of peroxisome proliferator activated receptor γ in monocyte/macrophages of patients with coronary heart disease. Br J Pharmacol 158:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Bailey ST, Ghosh S (2005) PPAR’ting ways with inflammation. Nat Immunol 6:966–967

    Article  PubMed  CAS  Google Scholar 

  • Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff AU, Hontecillas R (2004) Activation of PPAR [gamma] and [delta] by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791

    Article  PubMed  CAS  Google Scholar 

  • Blanquart C, Barbier O, Fruchart J, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273

    Article  PubMed  CAS  Google Scholar 

  • Blanquicett C, Kang BY, Ritzenthaler JD, Jones DP, Hart CM (2010) Oxidative stress modulates PPAR [gamma] in vascular endothelial cells. Free Radic Biol Med 48:1618–1625

    Article  PubMed  CAS  Google Scholar 

  • Chan ED, Riches D, White CW (2001) Redox paradox: effect of N-acetylcysteine and serum on oxidation reduction-sensitive mitogen-activated protein kinase signaling pathways. Am J Respir Cell Mol Biol 24:627–632

    PubMed  CAS  Google Scholar 

  • Chung JH, Seo A, Chung SW, Kim MK, Leeuwenburgh C, Yu BP, Chung HY (2008) Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev 7:126–136

    Article  PubMed  CAS  Google Scholar 

  • Dasu MR, Park S, Devaraj S, Jialal I (2009) Pioglitazone inhibits toll-like receptor expression and activity in human monocytes and db/db mice. Endocrinology 150:3457–3464

    Article  PubMed  CAS  Google Scholar 

  • Dubuquoy L, Rousseaux C, Thuru X, Peyrin-Biroulet L, Romano O, Chavatte P, Chamaillard M, Desreumaux P (2006) PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut 55:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Francis GA, Annicotte JS, Auwerx J (2003) PPAR agonists in the treatment of atherosclerosis. Curr Opin Pharmacol 3:186–191

    Article  PubMed  CAS  Google Scholar 

  • Graham TL, Mookherjee C, Suckling KE (2005) The PPAR [delta] agonist GW0742X reduces atherosclerosis in LDLR-/-mice. Atherosclerosis 181:29–37

    Article  PubMed  CAS  Google Scholar 

  • Gumieniczek A (2003) Effect of the new thiazolidinedione-pioglitazone on the development of oxidative stress in liver and kidney of diabetic rabbits. Life Sci 74:553–562

    Article  PubMed  CAS  Google Scholar 

  • Izzedine H, Launay-Vacher V, Buhaescu I, Heurtier A, Baumelou A, Deray G (2005) PPAR-gamma-agonists’ renal effects. Minerva Urol Nefrol 57:247–260

    PubMed  CAS  Google Scholar 

  • Jaramillo M, Olivier M (2002) Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase-and cyclic adenosine 5′-monophosphate (cAMP)-dependent pathways: involvement of NF-{kappa}B, activator protein 1, and cAMP response element binding protein. J Immunol 169:7026–7038

    PubMed  CAS  Google Scholar 

  • Jung SH, Kang KD, Ji D, Fawcett RJ, Safa R, Kamalden TA, Osborne NN (2008) The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochem Int 53:325–337

    Article  PubMed  CAS  Google Scholar 

  • Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2003) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat Immunol 5:104–112

    Article  PubMed  Google Scholar 

  • Kielian T, Drew PD (2003) Effects of peroxisome proliferator-activated receptor-γ agonists on central nervous system inflammation. J Neurosci Res 71:315–325

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Kim HK, Park S, Kim JY, Zou Y, Cho KH, Kim YS, Yu BP, Choi JS, Chung HY (2006) Short-term feeding of baicalin inhibits age-associated NF-[kappa]B activation. Mech Ageing Dev 127:719–725

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Chung SW, Kim DH, Kim JY, Lee EK, Kim JM, Ha YM, Kim YS, No JK, Chung HY (2010) Modulation of age-related NF-[kappa]B activation by dietary zingerone via MAPK pathway. Exp Gerontol 45:419–426

    Article  PubMed  CAS  Google Scholar 

  • Kota BP, Huang TH, Roufogalis BD (2005) An overview on biological mechanisms of PPARs. Pharmacol Res 51:85–94

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa Y, Kawaguchi K, Takimoto H (2006) Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor. Curr Pharm Des 12:4271–4279

    Article  PubMed  CAS  Google Scholar 

  • Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L, Plunkeet KD, Shenk JL, Stimmel JB, Therapontos C, Willson TM, Blanchard SG (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41:6640–6650

    Article  PubMed  CAS  Google Scholar 

  • Li MH, Huang KL, Wu SY, Chen CW, Yan HC, Hsu K, Hsu CW, Tsai SH, Chu SJ (2009) Baicalin attenuates air embolism-induced acute lung injury in rat isolated lungs. Br J Pharmacol 157:244–251

    Article  PubMed  CAS  Google Scholar 

  • Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20:1945–1952

    Article  PubMed  CAS  Google Scholar 

  • Liang YC, Tsai SH, Tsai DC, Lin-Shiau SY, Lin JK (2001) Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-[gamma] by flavonoids in mouse macrophages. FEBS Lett 496:12–18

    Article  PubMed  CAS  Google Scholar 

  • Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev 35:57–68

    Article  PubMed  CAS  Google Scholar 

  • Lixuan Z, Jingcheng D, Wenqin Y, Jianhua H, Baojun L, Xiaotao F (2010) Baicalin attenuates inflammation by inhibiting NF-[kappa]B activation in cigarette smoke induced inflammatory models. Pulm Pharmacol Ther 23:411–419

    Article  PubMed  Google Scholar 

  • Marion-Letellier R, Dechelotte P, Iacucci M, Ghosh S (2009) Dietary modulation of peroxisome proliferator-activated receptor gamma. Gut 58:586–593

    Article  PubMed  CAS  Google Scholar 

  • Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK (2005) A sumoylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 437:759–763

    Article  PubMed  CAS  Google Scholar 

  • Pedersen G, Brynskov J (2010) Topical rosiglitazone treatment improves ulcerative colitis by restoring peroxisome proliferator-activated receptor-γ activity. Am J Gastroenterol 105:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Ricote M, Glass CK (2007) PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta 1771:926–935

    PubMed  CAS  Google Scholar 

  • Sasaki M, Jordan P, Welbourne T, Minagar A, Joh T, Itoh M, Elrod JW, Alexander JS (2005) Troglitazone, a PPAR-γ activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-α. BMC Physiol 5:3

    Article  PubMed  Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69:273–278

    Article  PubMed  CAS  Google Scholar 

  • Sommer M, Wolf G (2000) Rosiglitazone increases PPARγ in renal tubular epithelial cells and protects against damage by hydrogen peroxide. Am J Nephrol 27:425–434

    Article  Google Scholar 

  • Staels B, Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54:2460–2470

    Article  PubMed  CAS  Google Scholar 

  • Straus DS, Glass CK (2007) Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 28:551–558

    Article  PubMed  CAS  Google Scholar 

  • Sung B, Park S, Yu BP, Chung HY (2006) Amelioration of age-related inflammation and oxidative stress by PPAR [gamma] activator: suppression of NF-[kappa]B by 2,4-thiazolidinedione. Exp Gerontol 41:590–599

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Hasegawa H, Nagai T, Komuro I (2003) The role of PPARgamma-dependent pathway in the development of cardiac hypertrophy. Timely Top Med Cardiovasc Dis 39:347–357

    CAS  Google Scholar 

  • Tu XK, Yang WZ, Shi SS, Chen Y, Wang CH, Chen CM, Chen Z (2010) Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia. Inflammation 1–8 [Epub ahead of print]

  • Uwe S (2008) Anti-inflammatory interventions of NF-[kappa] B signaling: potential applications and risks. Biochem Pharmacol 75:1567–1579

    Article  PubMed  CAS  Google Scholar 

  • van Beekum O, Fleskens V, Kalkhoven E (2009) Posttranslational modifications of PPAR-γ: fine-tuning the metabolic master regulator. Obesity 17:213–219

    Article  PubMed  Google Scholar 

  • Videla LA (2010) Liver NF-κB and AP-1 activation and PPAR-α expression are negatively correlated in obese patients: pro-inflammatory implications. Clin Nutr 29:687–688

    Article  PubMed  Google Scholar 

  • Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, Langenbach R, Taniura S, Hong JS (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88:939–947

    Article  PubMed  CAS  Google Scholar 

  • Xiping Z, Guanghua F, Jinxian H, Weihong W, Rujun X, Wei Z, Jing Y, Qijun Y, Meijuan Y, Qing W (2010) Baicalin protects thymus of rats with severe acute pancreatitis. Inflammation 33:157–165

    Article  PubMed  Google Scholar 

  • Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB (2009) The PPAR agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 20:2380–2388

    Article  PubMed  CAS  Google Scholar 

  • Yeh CC, Kao SJ, Lin CC, Wang SD, Liu CJ, Kao ST (2007) The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci 80:1821–1831

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (MRC Program No. 2009-0083538) and a grant (Code # 7-19-42) from Rural Development Administration, Republic of Korea. We are grateful to the Aging Tissue Bank for providing aged rat kidney tissue. The authors thank Editage (a division of Cactus Communications Pvt. Ltd.) for valuable editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Young Chung.

Additional information

Hyun Ae Lim and Eun Kyeong Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, H.A., Lee, E.K., Kim, J.M. et al. PPARγ activation by baicalin suppresses NF-κB-mediated inflammation in aged rat kidney. Biogerontology 13, 133–145 (2012). https://doi.org/10.1007/s10522-011-9361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9361-4

Keywords

Navigation