Skip to main content
Log in

Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The decline in physical performance with increasing age is a crucial problem in our aging society. We examined the effects of resveratrol, a natural polyphenolic compound present in grapes, in combination with habitual exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1). The endurance capacity of SAMP1 mice undergoing an exercise regimen (SAMP1-Ex) decreased over 12 weeks whereas that of SAMP1 mice fed 0.2% (w/w) resveratrol along with exercise (SAMP1-ExRes) remained significantly higher. In the SAMP1-ExRes group, there was a significant increase in oxygen consumption and skeletal muscle mRNA levels of mitochondrial function-related enzymes. These results suggest that the intake of resveratrol, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and that these effects are attributable, at least in part, to improved mitochondrial function in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CYOX:

Cytochrome c oxidase

EDL:

Extensor digitorum longus

PGC-1:

Peroxisome proliferator-activated receptor-γ coactivator-1

SAM:

Senescence-accelerated mice

References

  • Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y et al (2007) The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 5:35–46. doi:10.1016/j.cmet.2006.12.003

    Article  PubMed  CAS  Google Scholar 

  • Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886. doi:10.1096/fj.02-0367com

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506. doi:10.1038/nrd2060

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342. doi:10.1038/nature05354

    Article  PubMed  CAS  Google Scholar 

  • Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM et al (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312. doi:10.1152/japplphysiol.01231.2007

    Article  PubMed  CAS  Google Scholar 

  • Cannon CM, Dieter-Seelig H, Stodieck LS, Hanson AM, Simske SJ, Ferguson VL (2005) A novel combination of methods to assess sarcopenia and muscle performance in mice. Biomed Sci Instrum 41:116–121

    PubMed  CAS  Google Scholar 

  • Derave W, Eijnde BO, Ramaekers M, Hespel P (2005) Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Exp Gerontol 40:562–572. doi:10.1016/j.exger.2005.05.005

    Article  PubMed  CAS  Google Scholar 

  • Deschenes MR (2004) Effects of aging on muscle fibre type and size. Sports Med 34:809–824. doi:10.2165/00007256-200434120-00002

    Article  PubMed  Google Scholar 

  • Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622. doi:10.1172/JCI27794

    Article  PubMed  CAS  Google Scholar 

  • Frankel EN, Waterhouse AL, Kinsella JE (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 341:1103–1104. doi:10.1016/0140-6736(93)92472-6

    Article  PubMed  CAS  Google Scholar 

  • Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E et al (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52. doi:10.1096/fj.04-2173com

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa M (2002) A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice. Mech Ageing Dev 123:1553–1561. doi:10.1016/S0047-6374(02)00091-X

    Article  PubMed  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196. doi:10.1038/nature01960

    Article  PubMed  CAS  Google Scholar 

  • Joseph AM, Pilegaard H, Litvintsev A, Leick L, Hood DA (2006) Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise. Essays Biochem 42:13–29. doi:10.1042/bse0420013

    Article  PubMed  CAS  Google Scholar 

  • Juhn MS (2003) Popular sports supplements and ergogenic aids. Sports Med 33:921–939. doi:10.2165/00007256-200333120-00004

    Article  PubMed  Google Scholar 

  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792. doi:10.1172/JCI29126

    Article  PubMed  CAS  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122. doi:10.1016/j.cell.2006.11.013

    Article  PubMed  CAS  Google Scholar 

  • Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S et al (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:672–687. doi:10.1371/journal.pbio.0030101

    Article  CAS  Google Scholar 

  • Matsuzawa Y (2006a) The metabolic syndrome and adipocytokines. FEBS Lett 580:2917–2921. doi:10.1016/j.febslet.2006.04.028

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa Y (2006b) Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med 3:35–42. doi:10.1038/ncpcardio0380

    Article  PubMed  CAS  Google Scholar 

  • Miller NJ, Rice-Evans CA (1995) Antioxidant activity of resveratrol in red wine. Clin Chem 41:1789

    PubMed  CAS  Google Scholar 

  • Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I (2005) Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Integr Comp Physiol 288:R708–R715. doi:10.1152/ajpregu.00693.2004

    PubMed  CAS  Google Scholar 

  • Murase T, Haramizu S, Shimotoyodome A, Tokimitsu I, Hase T (2006) Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am J Physiol Regul Integr Comp Physiol 290:R1550–R1556. doi:10.1152/ajpregu.00752.2005

    PubMed  CAS  Google Scholar 

  • Musi N, Fujii N, Hirshman MF, Ekberg I, Froberg S, Ljungqvist O et al (2001) AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 50:921–927. doi:10.2337/diabetes.50.5.921

    Article  PubMed  CAS  Google Scholar 

  • Nair KS (2005) Aging muscle. Am J Clin Nutr 81:953–963

    PubMed  CAS  Google Scholar 

  • Peronnet F, Massicotte D (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16:23–29

    PubMed  CAS  Google Scholar 

  • Rodriguez-Calvo R, Jove M, Coll T, Camins A, Sanchez RM, Alegret M et al (2006) Related PGC-1β down-regulation is associated with reduced ERRα activity and MCAD expression in skeletal muscle of senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 61:773–780

    PubMed  Google Scholar 

  • Ruderman N, Prentki M (2004) AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3:340–351. doi:10.1038/nrd1344

    Article  PubMed  CAS  Google Scholar 

  • Sakakima H, Yoshida Y, Suzuki S, Morimoto N (2004) The effects of aging and treadmill running on soleus and gastrocnemius muscle morphology in the senescence-accelerated mouse (SAMP1). J Gerontol A Biol Sci Med Sci 59:1015–1021

    PubMed  Google Scholar 

  • Smith MA, Reid MB (2006) Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir Physiol Neurobiol 151:229–241. doi:10.1016/j.resp.2005.12.011

    Article  PubMed  CAS  Google Scholar 

  • Spriet LL, Gibala MJ (2004) Nutritional strategies to influence adaptations to training. J Sports Sci 22:127–141. doi:10.1080/0264041031000140608

    Article  PubMed  Google Scholar 

  • Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T et al (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17:183–194. doi:10.1016/0047-6374(81)90084-1

    Article  PubMed  CAS  Google Scholar 

  • Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M et al (2002) Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283:E66–E72

    PubMed  CAS  Google Scholar 

  • Vollaard NB, Shearman JP, Cooper CE (2005) Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med 35:1045–1062. doi:10.2165/00007256-200535120-00004

    Article  PubMed  Google Scholar 

  • Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO (2000) Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88:2219–2226

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769. doi:10.1038/nature01705

    Article  PubMed  CAS  Google Scholar 

  • Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B et al (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55:2180–2191. doi:10.2337/db05-1188

    Article  PubMed  CAS  Google Scholar 

  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99:15983–15987. doi:10.1073/pnas.252625599

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takatoshi Murase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murase, T., Haramizu, S., Ota, N. et al. Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice. Biogerontology 10, 423–434 (2009). https://doi.org/10.1007/s10522-008-9177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9177-z

Keywords

Navigation