Skip to main content
Log in

Apelin is transcriptionally regulated by ER stress-induced ATF4 expression via a p38 MAPK-dependent pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apelin, which is an endogenous ligand for the orphan G-protein-coupled receptor APJ, was reported to be up-regulated by hypoxia-inducible factor 1-α (HIF1-α) in hypoxia- and insulin-treated cell systems. However, a negative transcriptional regulator of apelin has not yet been identified. In this study, we showed that apelin is down-regulated by ATF4 via the pro-apoptotic p38 MAPK pathway under endoplasmic reticulum (ER) stress. First, we analyzed the human apelin promoter to characterize the effects of ER stress on apelin expression in hepatocytes. Treatment with thapsigargin, an inducer of ER stress, and over-expression of ATF4 decreased apelin expression in hepatocytes. This work identified an ATF4-responsive region within the apelin promoter. Interestingly, ATF4-mediated repression of apelin was dependent upon the N-terminal domain of ATF4. C/EBP-β knockdown experiments suggest that C/EBP-β, which acts as an ATF4 binding partner, is critical for the ER stress-induced down-regulation of apelin. We also demonstrated that ATF4 regulates apelin gene expression via p38 pathways. Ectopic expression of constitutively active MKK6, an upstream kinase of p38, suggested that activation of the p38 pathway is sufficient to induce ATF4-mediated repression of apelin. Moreover, apelin enhanced cell migration in a wound healing assay in a p38 MAPK-dependent manner. Furthermore, analysis of caspase-3 activation indicated that ATF4 knockdown up-regulated apelin expression, leading to the inability of MKK6 (CA) to exert pro-apoptotic effects. Taken together, our results suggest that ATF4-mediated repression of apelin contributes substantially to the pro-apoptotic effects of p38.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATF4:

Activating transcription factor 4

C/EBP-β:

CCAAT/enhancer-binding protein-β

CRE:

cAMP-response element

ER:

Endoplasmic reticulum

MKK6:

Mitogen-activated protein kinase kinase 6

PERK:

RNA-dependent protein kinase-like ER kinase

References

  1. Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279. doi:10.1074/jbc.M404149200

    Article  CAS  PubMed  Google Scholar 

  2. Sunter D, Hewson AK, Dickson SL (2003) Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett 353(1):1–4

    Article  CAS  PubMed  Google Scholar 

  3. Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T, Hinuma S, Baba A (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325(2):395–400. doi:10.1016/j.bbrc.2004.10.042

    Article  CAS  PubMed  Google Scholar 

  4. Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, Guo LJ, Zhou HD, Wu XP, Liao EY (2007) Apelin suppresses apoptosis of human osteoblasts. Apoptosis 12(1):247–254. doi:10.1007/s10495-006-0489-7

    Article  CAS  PubMed  Google Scholar 

  5. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538(2–3):162–171

    Article  CAS  PubMed  Google Scholar 

  6. Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S, Kitada C, Nishizawa N, Murosaki S, Kurokawa T, Onda H, Tatemoto K, Fujino M (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452(1):25–35

    Article  CAS  PubMed  Google Scholar 

  7. Wei L, Hou X, Tatemoto K (2005) Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul Pept 132(1–3):27–32. doi:10.1016/j.regpep.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  8. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476. doi:10.1006/bbrc.1998.9489

    Article  CAS  PubMed  Google Scholar 

  9. Xie H, Tang SY, Cui RR, Huang J, Ren XH, Yuan LQ, Lu Y, Yang M, Zhou HD, Wu XP, Luo XH, Liao EY (2006) Apelin and its receptor are expressed in human osteoblasts. Regul Pept 134(2–3):118–125. doi:10.1016/j.regpep.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  10. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74(1):34–41

    Article  CAS  PubMed  Google Scholar 

  11. Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y (1999) Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 84(1–2):199–203

    Article  CAS  PubMed  Google Scholar 

  12. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118(3):119–125. doi:10.1016/j.regpep.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  13. Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y (2004) Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18(15):1909–1911. doi:10.1096/fj.04-1930fje

    CAS  PubMed  Google Scholar 

  14. Masri B, Lahlou H, Mazarguil H, Knibiehler B, Audigier Y (2002) Apelin (65-77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem Biophys Res Commun 290(1):539–545. doi:10.1006/bbrc.2001.6230

    Article  CAS  PubMed  Google Scholar 

  15. Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F (2008) Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res 103(4):432–440. doi:10.1161/CIRCRESAHA.108.179333

    Article  CAS  PubMed  Google Scholar 

  16. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  CAS  PubMed  Google Scholar 

  17. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. doi:10.1146/annurev.biochem.73.011303.074134

    Article  PubMed  Google Scholar 

  18. Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(Pt 1):135–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Su N, Kilberg MS (2008) C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene. J Biol Chem 283(50):35106–35117. doi:10.1074/jbc.M806874200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lassot I, Estrabaud E, Emiliani S, Benkirane M, Benarous R, Margottin-Goguet F (2005) p300 modulates ATF4 stability and transcriptional activity independently of its acetyltransferase domain. J Biol Chem 280(50):41537–41545. doi:10.1074/jbc.M505294200

    Article  CAS  PubMed  Google Scholar 

  21. Tominaga H, Maeda S, Hayashi M, Takeda S, Akira S, Komiya S, Nakamura T, Akiyama H, Imamura T (2008) CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Mol Biol Cell 19(12):5373–5386. doi:10.1091/mbc.E08-03-0329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tang SY, Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, Zhou HD, Wu XP, Liao EY (2007) Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides 28(3):708–718. doi:10.1016/j.peptides.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  23. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23(16):2838–2849. doi:10.1038/sj.onc.1207556

    Article  CAS  PubMed  Google Scholar 

  24. Bagheri-Yarmand R, Vadlamudi RK, Kumar R (2003) Activating transcription factor 4 overexpression inhibits proliferation and differentiation of mammary epithelium resulting in impaired lactation and accelerated involution. J Biol Chem 278(19):17421–17429. doi:10.1074/jbc.M300761200

    Article  CAS  PubMed  Google Scholar 

  25. Tao J, Zhu W, Li Y, Xin P, Li J, Liu M, Redington AN, Wei M (2011) Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am J Physiol Heart Circ Physiol 301(4):H1471–H1486. doi:10.1152/ajpheart.00097.2011

    CAS  PubMed  Google Scholar 

  26. Chen H, Zheng C, Zhang X, Li J, Zheng L, Huang K (2011) Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 32(8):1634–1639. doi:10.1016/j.peptides.2011.06.025

    Article  CAS  PubMed  Google Scholar 

  27. Iwanaga Y, Kihara Y, Takenaka H, Kita T (2006) Down-regulation of cardiac apelin system in hypertrophied and failing hearts: possible role of angiotensin II-angiotensin type 1 receptor system. J Mol Cell Cardiol 41(5):798–806. doi:10.1016/j.yjmcc.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  28. Chong KS, Gardner RS, Morton JJ, Ashley EA, McDonagh TA (2006) Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur J Heart Fail 8(4):355–360. doi:10.1016/j.ejheart.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  29. Hamamura K, Goldring MB, Yokota H (2009) Involvement of p38 MAPK in regulation of MMP13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum. Arch Oral Biol 54(3):279–286. doi:10.1016/j.archoralbio.2008.11.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Luo S, Lee AS (2002) Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress: activating transcription factor 6 as a target for stress-induced phosphorylation. Biochem J 366(Pt 3):787–795. doi:10.1042/BJ20011802

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18(45):6087–6093. doi:10.1038/sj.onc.1203129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0030072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonchae Choe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, K., Oh, Y., Kim, SJ. et al. Apelin is transcriptionally regulated by ER stress-induced ATF4 expression via a p38 MAPK-dependent pathway. Apoptosis 19, 1399–1410 (2014). https://doi.org/10.1007/s10495-014-1013-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1013-0

Keywords

Navigation