Skip to main content

Advertisement

Log in

Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PaCa) is one of the most aggressive, apoptosis-resistant and currently incurable cancers with a poor survival rate. Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase, whose role in PaCa survival is not yet known. Here, we show that eEF-2K is overexpressed in PaCa cells and its down-regulation induces apoptotic cell death. Rottlerin (ROT), a polyphenolic compound initially identified as a PKC-δ inhibitor, induces apoptosis and autophagy in a variety of cancer cells including PaCa cells. We demonstrated that ROT induces intrinsic apoptosis, with dissipation of mitochondrial membrane potential (ΔΨm), and stimulates extrinsic apoptosis with concomitant induction of TNF-related apoptosis inducing ligand (TRAIL) receptors, DR4 and DR5, with caspase-8 activation, in PANC-1 and MIAPaCa-2 cells. Notably, while none of these effects were dependent on PKC-δ inhibition, ROT down-regulates eEF-2K at mRNA level, and induce eEF-2K protein degradation through ubiquitin–proteasome pathway. Down-regulation of eEF-2K recapitulates the events observed after ROT treatment, while its over-expression suppressed the ROT-induced apoptosis. Furthermore, eEF-2K regulates the expression of tissue transglutaminase (TG2), an enzyme previously implicated in proliferation, drug resistance and survival of cancer cells. Inhibition of eEF-2K/TG2 axis leads to caspase-independent apoptosis which is associated with induction of apoptosis-inducing factor (AIF). Collectively, these results indicate, for the first time, that the down-regulation of eEF-2K leads to induction of intrinsic, extrinsic as well as AIF-dependent apoptosis in PaCa cells, suggesting that eEF-2K may represent an attractive therapeutic target for the future anticancer agents in PaCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Crane CH, Ben-Josef E, Small W Jr (2004) Chemotherapy for pancreatic cancer. N Engl J Med 350:2713–2715 (author reply 2713–2715)

    Article  CAS  PubMed  Google Scholar 

  2. He X, Zheng Z, Li J, Ben Q, Liu J et al (2012) DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. Carcinogenesis 33:555–562

    Article  CAS  PubMed  Google Scholar 

  3. Ottenhof NA, de Wilde RF, Maitra A, Hruban RH, Offerhaus GJ (2011) Molecular characteristics of pancreatic ductal adenocarcinoma. Pathol Res Int 2011:620601

    Article  Google Scholar 

  4. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    CAS  PubMed  Google Scholar 

  5. Maioli E, Torricelli C, Valacchi G (2012) Rottlerin and cancer: novel evidence and mechanisms. ScientificWorldJournal 2012:350826

    Article  CAS  PubMed  Google Scholar 

  6. Kaufmann T, Tai L, Ekert PG, Huang DC, Norris F et al (2007) The BH3-only protein bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell 129:423–433

    Article  CAS  PubMed  Google Scholar 

  7. Ohno I, Eibl G, Odinokova I, Edderkaoui M, Damoiseaux RD et al (2010) Rottlerin stimulates apoptosis in pancreatic cancer cells through interactions with proteins of the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol 298:G63–G73

    Article  CAS  PubMed  Google Scholar 

  8. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  9. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  11. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  14. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    Article  CAS  PubMed  Google Scholar 

  16. Akar U, Ozpolat B, Mehta K, Fok J, Kondo Y et al (2007) Tissue transglutaminase inhibits autophagy in pancreatic cancer cells. Mol Cancer Res 5:241–249

    Article  CAS  PubMed  Google Scholar 

  17. McCracken MA, Miraglia LJ, McKay RA, Strobl JS (2003) Protein kinase C delta is a prosurvival factor in human breast tumor cell lines. Mol Cancer Ther 2:273–281

    CAS  PubMed  Google Scholar 

  18. Tillman DM, Izeradjene K, Szucs KS, Douglas L, Houghton JA (2003) Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondria independent of protein kinase C. Cancer Res 63:5118–5125

    CAS  PubMed  Google Scholar 

  19. Clark AS, West KA, Blumberg PM, Dennis PA (2003) Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCdelta promotes cellular survival and chemotherapeutic resistance. Cancer Res 63:780–786

    CAS  PubMed  Google Scholar 

  20. Ni H, Ergin M, Tibudan SS, Denning MF, Izban KF et al (2003) Protein kinase C-delta is commonly expressed in multiple myeloma cells and its downregulation by rottlerin causes apoptosis. Br J Haematol 121:849–856

    Article  CAS  PubMed  Google Scholar 

  21. Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W et al (1994) Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199:93–98

    Article  CAS  PubMed  Google Scholar 

  22. Soltoff SP (2001) Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase Cdelta tyrosine phosphorylation. J Biol Chem 276:37986–37992

    CAS  PubMed  Google Scholar 

  23. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  CAS  PubMed  Google Scholar 

  24. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315

    Article  CAS  PubMed  Google Scholar 

  25. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1):S96–102

    Article  CAS  PubMed  Google Scholar 

  26. Hait WN, Wu H, Jin S, Yang JM (2006) Elongation factor-2 kinase: its role in protein synthesis and autophagy. Autophagy 2:294–296

    CAS  PubMed  Google Scholar 

  27. Tekedereli I, Alpay SN, Tavares CD, Cobanoglu ZE, Kaoud TS et al (2012) Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer. PLoS ONE 7:e41171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jorgensen R, Merrill AR, Andersen GR (2006) The life and death of translation elongation factor 2. Biochem Soc Trans 34:1–6

    Article  CAS  PubMed  Google Scholar 

  29. Bagaglio DM, Hait WN (1994) Role of calmodulin-dependent phosphorylation of elongation factor 2 in the proliferation of rat glial cells. Cell Growth Differ 5:1403–1408

    CAS  PubMed  Google Scholar 

  30. Nilsson A, Nygard O (1995) Phosphorylation of eukaryotic elongation factor 2 in differentiating and proliferating HL-60 cells. Biochim Biophys Acta 1268:263–268

    Article  PubMed  Google Scholar 

  31. Parmer TG, Ward MD, Yurkow EJ, Vyas VH, Kearney TJ et al (1999) Activity and regulation by growth factors of calmodulin-dependent protein kinase III (elongation factor 2-kinase) in human breast cancer. Br J Cancer 79:59–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Knebel A, Haydon CE, Morrice N, Cohen P (2002) Stress-induced regulation of eukaryotic elongation factor 2 kinase by SB 203580-sensitive and -insensitive pathways. Biochem J 367:525–532

    Article  CAS  PubMed  Google Scholar 

  33. Devkota AK, Tavares CD, Warthaka M, Abramczyk O, Marshall KD et al (2012) Investigating the kinetic mechanism of inhibition of elongation factor 2 kinase by NH125: evidence of a common in vitro artifact. Biochemistry 51:2100–2112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mehta K, Fok J, Miller FR, Koul D, Sahin AA (2004) Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 10:8068–8076

    Article  CAS  PubMed  Google Scholar 

  35. Akar U, Chaves-Reyez A, Barria M, Tari A, Sanguino A et al (2008) Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4:669–679

    CAS  PubMed  Google Scholar 

  36. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  37. Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J et al (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3:2091–2100

    Article  CAS  PubMed  Google Scholar 

  38. Soltoff SP (2007) Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol Sci 28:453–458

    Article  CAS  PubMed  Google Scholar 

  39. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M et al (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5:2512–2521

    Article  CAS  PubMed  Google Scholar 

  40. Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D et al (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355

    Article  CAS  PubMed  Google Scholar 

  41. Arora S, Yang JM, Hait WN (2005) Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase. Cancer Res 65:3806–3810

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell BS (2003) The proteasome: an emerging therapeutic target in cancer. N Engl J Med 348:2597–2598

    Article  PubMed  Google Scholar 

  43. Ozpolat B, Akar U, Mehta K, Lopez-Berestein G (2007) PKC delta and tissue transglutaminase are novel inhibitors of autophagy in pancreatic cancer cells. Autophagy 3:480–483

    CAS  PubMed  Google Scholar 

  44. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  PubMed  Google Scholar 

  45. Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717

    Article  CAS  PubMed  Google Scholar 

  46. Kim CH, Gupta S (2000) Expression of TRAIL (Apo2L), DR4 (TRAIL receptor 1), DR5 (TRAIL receptor 2) and TRID (TRAIL receptor 3) genes in multidrug resistant human acute myeloid leukemia cell lines that overexpress MDR 1 (HL60/Tax) or MRP (HL60/AR). Int J Oncol 16:1137–1139

    CAS  PubMed  Google Scholar 

  47. Masdehors P, Glaisner S, Maciorowski Z, Magdelenat H, Delic J (2000) Ubiquitin-dependent protein processing controls radiation-induced apoptosis through the N-end rule pathway. Exp Cell Res 257:48–57

    Article  CAS  PubMed  Google Scholar 

  48. Singh BN, Kumar D, Shankar S, Srivastava RK (2012) Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3 K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol 84:1154–1163

    Article  CAS  PubMed  Google Scholar 

  49. Parmer TG, Ward MD, Hait WN (1997) Effects of rottlerin, an inhibitor of calmodulin-dependent protein kinase III, on cellular proliferation, viability, and cell cycle distribution in malignant glioma cells. Cell Growth Differ 8:327–334

    CAS  PubMed  Google Scholar 

  50. Verma A, Wang H, Manavathi B, Fok JY, Mann AP et al (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res 66:10525–10533

    Article  CAS  PubMed  Google Scholar 

  51. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  CAS  PubMed  Google Scholar 

  52. Kang YH, Yi MJ, Kim MJ, Park MT, Bae S et al (2004) Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 64:8960–8967

    Article  CAS  PubMed  Google Scholar 

  53. Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  CAS  PubMed  Google Scholar 

  54. Wu H, Yang JM, Jin S, Zhang H, Hait WN (2006) Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 66:3015–3023

    Article  CAS  PubMed  Google Scholar 

  55. Cheng Y, Li H, Ren X, Niu T, Hait WN et al (2010) Cytoprotective effect of the elongation factor-2 kinase-mediated autophagy in breast cancer cells subjected to growth factor inhibition. PLoS ONE 5:e9715

    Article  PubMed Central  PubMed  Google Scholar 

  56. Wu H, Zhu H, Liu DX, Niu TK, Ren X et al (2009) Silencing of elongation factor-2 kinase potentiates the effect of 2-deoxy-d-glucose against human glioma cells through blunting of autophagy. Cancer Res 69:2453–2460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Cheng Y, Ren X, Zhang Y, Patel R, Sharma A et al (2011) eEF-2 kinase dictates cross-talk between autophagy and apoptosis induced by Akt Inhibition, thereby modulating cytotoxicity of novel Akt inhibitor MK-2206. Cancer Res 71:2654–2663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Kevin N. Dalby, and his laboratory members, Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, for helpful discussions and critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Ozpolat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Supplementary material 2 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashour, A.A., Abdel-Aziz, AA.H., Mansour, A.M. et al. Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells. Apoptosis 19, 241–258 (2014). https://doi.org/10.1007/s10495-013-0927-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0927-2

Keywords

Navigation