Skip to main content
Log in

Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A prolonged or excessive adrenergic activation leads to myocyte loss and heart dysfunction; however, how it contributes to heart failure remains poorly defined. Here we show that isoproterenol (ISO) induced aberrant endoplasmic reticulum (ER) stress and apoptotic cell death, which was inhibited by activating the AMP-activated protein kinase (AMPK) in vitro and in vivo. Persistent ISO stimulation suppressed the AMPK phosphorylation and function, resulting in enhanced ER stress and the subsequent cell apoptosis in cardiomyocytes in vitro and in vivo. AMPK activation decreased the aberrant ER stress, apoptosis, and brain natriuretic peptide (BNP) release in ISO-treated cardiomyocytes, which was blocked by AMPK inhibitor Compound C. Importantly, increased ER stress and apoptosis were observed in ISO-treated cardiomyocytes isolated from AMPKα2−/− mice. Inhibition of ER stress attenuated the apoptosis but failed to reverse AMPK inhibition in ISO-treated cardiomyocytes. Moreover, metformin administration activated AMPK and reduced both ER stress and apoptosis in ISO-induced rat heart failure in vivo. We conclude that ISO, via AMPK inactivation, causes aberrant ER stress, cardiomyocyte injury, BNP release, apoptosis, and hence heart failure in vivo, all of which are inhibited by AMPK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMPK:

Adenosine monophosphate-activated protein kinase

ATF:

Activating transcription factor

BNP:

B-type natriuretic peptide

CHOP:

C/EBP homologous protein

ER:

Endoplasmic reticulum

GRP:

Glucose-regulated protein

IRE:

Inositol-requiring enzyme-1α

ISO:

Isoproterenol

PERK:

Protein kinase R-like ER kinase

References

  1. Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharm Sci 100:323–337

    Article  CAS  Google Scholar 

  2. Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EH (1998) Beta-adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am J Physiol 275:H961–H968

    PubMed  CAS  Google Scholar 

  3. Wang W, Zhang HY, Gao H, Kubo H, Berretta RM, Chen XW, Houser SR (2010) Beta(1)-adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways. Am J Physiol Heart Circ Physiol 299:H322–H331

    Article  PubMed  CAS  Google Scholar 

  4. El-Armouche A, Eschenhagen T (2009) Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev 14:225–241

    Article  PubMed  CAS  Google Scholar 

  5. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    Article  PubMed  CAS  Google Scholar 

  6. Zaugg M, Xu WM, Lucchinetti E, Shafiq SA, Jamali NZ, Siddiqui MAQ (2000) Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102:344–350

    Article  PubMed  CAS  Google Scholar 

  7. Liu JJ, Li DL, Zhou JA, Sun L, Zhao M, Kong SS, Wang YH, Yu XJ, Zhou J, Zang WJ (2011) Acetylcholine prevents angiotensin II-induced oxidative stress and apoptosis in H9c2 cells. Apoptosis 16:94–103

    Article  PubMed  CAS  Google Scholar 

  8. Hjalmarson A, Goldstein S, Fagerberg B et al (1999) Effect of metoprolol CR XL in chronic heart failure: metoprolol CR XL randomised Intervention trial in congestive heart failure (MERIT-HF). Lancet 353:2001–2007

    Article  Google Scholar 

  9. Groenning BA, Nilsson JC, Sondergaard L, Fritz-Hansen T, Larsson HBW, Hildebrandt PR (2000) Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J Am Coll Cardiol 36:2072–2080

    Article  PubMed  CAS  Google Scholar 

  10. Xu CY, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  PubMed  CAS  Google Scholar 

  11. Mao WK, Iwai C, Qin FZ, Liang CS (2005) Norepinephrine induces endoplasmic reticulum stress and downregulation of norepinephrine transporter density in PC12 cells via oxidative stress. Am J Physiol Heart Circ Physiol 288:H2381–H2389

    Article  PubMed  CAS  Google Scholar 

  12. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan JY (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  13. Zhang YH, Zhao CQ, Jiang LS, Dai LY (2011) Lentiviral shRNA silencing of CHOP inhibits apoptosis induced by cyclic stretch in rat annular cells and attenuates disc degeneration in the rats. Apoptosis 16:594–605

    Article  PubMed  CAS  Google Scholar 

  14. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, Giri S, Andreelli F (2010) AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol 45:276–295

    Article  PubMed  CAS  Google Scholar 

  15. Song P, Zou MH (2012) Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med 52:1607–1619

    Article  PubMed  CAS  Google Scholar 

  16. Zheng QJ, Yuan YX, Yi W, Lau WB, Wang YJ, Wang XL, Sun Y, Lopez BL, Christopher TA, Peterson JM, Wong GW, Yu SQ, Yi DH, Ma XL (2011) C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway. Arterioscler Thromb Vasc Biol 31:U2616–U2626

    Article  Google Scholar 

  17. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, Choi HC, Zou MH (2010) Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121:792–803

    Article  PubMed  CAS  Google Scholar 

  18. Wang YJ, Gao EH, Tao L, Lau WB, Yuan YX, Goldstein BJ, Lopez BL, Christopher TA, Tian R, Koch W, Ma XL (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119:835–844

    Article  PubMed  CAS  Google Scholar 

  19. Li J, Hu X, Selvakumar P, Russell RR 3rd, Cushman SW, Holman GD, Young LH (2004) Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab 287:E834–E841

    Article  PubMed  CAS  Google Scholar 

  20. Costa R, Morrison A, Wang J, Manithody C, Li J, Rezaie AR (2012) Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. J Thromb Haemost 10:1736–1744

    Article  PubMed  CAS  Google Scholar 

  21. Song P, Wang S, He C, Liang B, Viollet B, Zou MH (2011) AMPKalpha2 deletion exacerbates neointima formation by upregulating Skp2 in vascular smooth muscle cells. Circ Res 109:1230–1239

    Article  PubMed  CAS  Google Scholar 

  22. Wei F, Wang TZ, Zhang J, Yuan ZY, Tian HY, Ni YJ, Zhuo XZ, Han K, Liu Y, Lu Q, Bai HY, Ma AQ (2012) Mesenchymal stem cells neither fully acquire the electrophysiological properties of mature cardiomyocytes nor promote ventricular arrhythmias in infarcted rats. Basic Res Cardiol 107:274

    Article  PubMed  Google Scholar 

  23. Xi YT, Wu GR, Yang L, Han K, Du Y, Wang TZ, Lei XJ, Bai XJ, Ma AQ (2009) Increased late sodium currents are related to transcription of neuronal isoforms in a pressure-overload model. Eur J Heart Fail 11:749–757

    Article  PubMed  CAS  Google Scholar 

  24. Wang XH, Zhuo XZ, Ni YJ, Gong M, Wang TZ, Lu Q, Ma AQ (2012) Improvement of cardiac function and reversal of gap junction remodeling by neuregulin-1 beta in volume-overloaded rats with heart failure. J Geriatr Cardiol 9:172–179

    Article  PubMed  CAS  Google Scholar 

  25. Troughton RW, Lewis LK, Yandle TG, Pemberton CJ, Nicholls MG (2011) B-type natriuretic peptides: looking to the future. Ann Med 43:188–197

    Article  PubMed  CAS  Google Scholar 

  26. Kociol RD, Horton JR, Fonarow GC, Reyes EM, Shaw LK, O’Connor CM, Felker GM, Hernandez AF (2011) Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF) linked to medicare claims. Circ Heart Fail 4:628–636

    Article  PubMed  CAS  Google Scholar 

  27. Dong YZ, Zhang M, Liang B, Xie ZL, Zhao ZX, Asfa S, Choi HC, Zou MH (2010) Reduction of AMP-activated protein kinase alpha 2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121:792–803

    Article  PubMed  CAS  Google Scholar 

  28. Park CS, Cha H, Kwon EJ, Sreenivasaiah PK, Kim DH (2012) The chemical chaperone 4-phenylbutyric acid attenuates pressure-overload cardiac hypertrophy by alleviating endoplasmic reticulum stress. Biochem Biophys Res Commun 421:578–584

    Article  PubMed  CAS  Google Scholar 

  29. Boone AN, Rodrigues B, Brownsey RW (1999) Multiple-site phosphorylation of the 280 kDa isoform of acetyl-CoA carboxylase in rat cardiac myocytes: evidence that cAMP-dependent protein kinase mediates effects of beta-adrenergic stimulation. Biochem J 341(Pt 2):347–354

    Article  PubMed  CAS  Google Scholar 

  30. Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hajduch E, Ferre P, Foufelle F (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280:25250–25257

    Article  PubMed  CAS  Google Scholar 

  31. Gauthier MS, Miyoshi H, Souza SC, Cacicedo JM, Saha AK, Greenberg AS, Ruderman NB (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem 283:16514–16524

    Article  PubMed  CAS  Google Scholar 

  32. Vadasz I, Dada LA, Briva A, Trejo HE, Welch LC, Chen J, Toth PT, Lecuona E, Witters LA, Schumacker PT, Chandel NS, Seeger W, Sznajder JI (2008) AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na, K-ATPase endocytosis. J Clin Invest 118:752–762

    PubMed  CAS  Google Scholar 

  33. Jaswal JS, Lund CR, Keung W, Beker DL, Rebeyka IM, Lopaschuk GD (2010) Isoproterenol stimulates 5′-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts. Am J Physiol Heart Circ Physiol 299:H1135–H1145

    Article  PubMed  CAS  Google Scholar 

  34. Yin W, Mu J, Birnbaum MJ (2003) Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J Biol Chem 278:43074–43080

    Article  PubMed  CAS  Google Scholar 

  35. Meares GP, Hughes KJ, Naatz A, Papa FR, Urano F, Hansen PA, Benveniste EN, Corbett JA (2011) IRE1-dependent activation of AMPK in response to nitric oxide. Mol Cell Biol 31:4286–4297

    Article  PubMed  CAS  Google Scholar 

  36. Grimm D, Elsner D, Schunkert H, Pfeifer M, Griese D, Bruckschlegel G, Muders F, Riegger GA, Kromer EP (1998) Development of heart failure following isoproterenol administration in the rat: role of the renin-angiotensin system. Cardiovasc Res 37:91–100

    Article  PubMed  CAS  Google Scholar 

  37. Tabony AM, Yoshida T, Galvez S, Higashi Y, Sukhanov S, Chandrasekar B, Mitch WE, Delafontaine P (2011) Angiotensin II upregulates protein phosphatase 2Calpha and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting. Hypertension 58:643–649

    Article  PubMed  CAS  Google Scholar 

  38. Sasaki H, Asanuma H, Fujita M et al (2009) Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 119:2568–2577

    Article  PubMed  CAS  Google Scholar 

  39. Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 300:H2123–H2134

    Article  PubMed  CAS  Google Scholar 

  40. Kim M, Shen M, Ngoy S, Karamanlidis G, Liao R, Tian R (2012) AMPK isoform expression in the normal and failing hearts. J Mol Cell Cardiol 52:1066–1073

    Article  PubMed  CAS  Google Scholar 

  41. Okada K, Minamino T, Tsukamoto Y et al (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constrictio—possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110:705–712

    Article  PubMed  Google Scholar 

  42. Giansanti V, Torriglia A, Scovassi AI (2011) Conversation between apoptosis and autophagy: “Is it your turn or mine?”. Apoptosis 16:321–333

    Article  PubMed  Google Scholar 

  43. Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548

    Article  PubMed  Google Scholar 

  44. Wang XY, Yang CT, Zheng DD, Mo LQ, Lan AP, Yang ZL, Hu F, Chen PX, Liao XX, Feng JQ (2012) Hydrogen sulfide protects H9c2 cells against doxorubicin-induced cardiotoxicity through inhibition of endoplasmic reticulum stress. Mol Cell Biochem 363:419–426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China (81000063 to Ma AQ), Scientist Development Grant from American Heart Association (11SDG5560036 to Song P), and Oklahoma Center for the Advancement of Science and Technology (HR12-061 to Song P). The AMPKα2−/− mice were kindly provided by Dr. Benoit Viollet from Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.

Disclosures

All authors have no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Qun Ma or Ping Song.

Additional information

Zhuo X Z and Wu Y contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, XZ., Wu, Y., Ni, YJ. et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis 18, 800–810 (2013). https://doi.org/10.1007/s10495-013-0843-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0843-5

Keywords

Navigation