Skip to main content
Log in

Type I IFNs signaling and apoptosis resistance in glioblastoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Deletion of type I IFN genes and resistance to apoptosis induced by type I IFNs are common in glioblastoma. Here we have investigated the importance of the constitutive weak IFN-signaling in the apoptotic response to IFN-α in glioblastoma cells. U87MG cells hold a deletion of type I IFN genes, whereas in T98G cells the spontaneous IFN signaling is intact. In response to IFN-α U87MG cells produce much less TRAIL, while other IFN-inducible genes were efficiently up-regulated. Alterations in TRAIL promoter sequence and activity were not observed. DNA methylation can influence TRAIL transcription but without overt differences between the two cell lines. We also discovered that TRAIL mRNA stability is influenced by IFN-α, but again no differences can be appreciated between the two cell lines. By silencing IFNAR1 we provide evidences that the spontaneous IFN signaling loop is required to sustain elevated levels of TRAIL expression, possibly through the regulation of IRF-1. Despite the presence/absence of the constitutive IFN signaling, both cell lines were resistant to IFN-α induced apoptosis. Targeting the deisgylase USP18 can overcome resistance to IFN-induced apoptosis only in T98G cells. Alterations in elements of the extrinsic apoptotic pathway, such as Bid and c-FLIP contribute to apoptotic resistance of U87MG cells. Down-regulation of USP18 expression together with the induction of ER-stress efficiently restored apoptosis in U87MG cells. Finally, we demonstrated that the BH3-only protein Noxa provides an important contribution in the apoptotic response to ER-stress in USP18 silenced cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6(12):975–990

    Article  PubMed  CAS  Google Scholar 

  2. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8(3):237–249

    Article  PubMed  CAS  Google Scholar 

  3. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710

    Article  PubMed  CAS  Google Scholar 

  4. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359(9311):1011–1018

    Article  PubMed  CAS  Google Scholar 

  5. Yung WK, Prados M, Levin VA, Fetell MR, Bennett J, Mahaley MS, Salcman M, Etcubanas E (1991) Intravenous recombinant interferon beta in patients with recurrent malignant gliomas: a phase I/II study. J Clin Oncol 9(11):1945–1949

    PubMed  CAS  Google Scholar 

  6. Fine HA, Wen PY, Robertson M, O’Neill A, Kowal J, Loeffler JS, Black PM (1997) A phase I trial of a new recombinant human beta-interferon (BG9015) for the treatment of patients with recurrent gliomas. Clin Cancer Res 3(3):381–387

    PubMed  CAS  Google Scholar 

  7. Ichimura K, Schmidt EE, Yamaguchi N, James CD, Collins VP (1994) A common region of homozygous deletion in malignant human gliomas lies between the IFN alpha/omega gene cluster and the D9S171 locus. Cancer Res 54(12):3127–3130

    PubMed  CAS  Google Scholar 

  8. Dreyling MH, Bohlander SK, Adeyanju MO, Olopade OI (1995) Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization. Cancer Res 55(5):984–988

    PubMed  CAS  Google Scholar 

  9. Olopade OI, Jenkins RB, Ransom DT, Malik K, Pomykala H, Nobori T, Cowan JM, Rowley JD, Diaz MO (1992) Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. Cancer Res 52(9):2523–2529

    PubMed  CAS  Google Scholar 

  10. Lienenklaus S, Cornitescu M, Zietara N, Lyszkiewicz M, Gekara N, Jablonska J, Edenhofer F, Rajewsky K, Bruder D, Hafner M, Staeheli P, Weiss S (2009) Novel reporter mouse reveals constitutive and inflammatory expression of IFN-beta in vivo. J Immunol 183(5):3229–3236

    Article  PubMed  CAS  Google Scholar 

  11. Taniguchi T, Takaoka A (2001) A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2(5):378–386

    Article  PubMed  CAS  Google Scholar 

  12. Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568

    Article  PubMed  CAS  Google Scholar 

  13. Knobeloch KP, Utermohlen O, Kisser A, Prinz M, Horak I (2005) Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol Cell Biol 25(24):11030–11034

    Article  PubMed  CAS  Google Scholar 

  14. Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY, Shuai K, Zhang DE (2006) UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J 25(11):2358–2367

    Article  PubMed  CAS  Google Scholar 

  15. Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S, Brancolini C (2009) Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system. Mol Cancer Ther 8(11):3140–3150

    Article  PubMed  CAS  Google Scholar 

  16. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 272(41):25417–25420

    Article  PubMed  CAS  Google Scholar 

  17. Potu H, Sgorbissa A, Brancolini C (2010) Identification of USP18 as an important regulator of the susceptibility to IFN-alpha and drug-induced apoptosis. Cancer Res 70(2):655–665

    Article  PubMed  CAS  Google Scholar 

  18. Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, Huw L, Katta V, Cavet G, Hymowitz SG, Amler L, Ashkenazi A (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13(9):1070–1077

    Article  PubMed  CAS  Google Scholar 

  19. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18, 000 cancer gene expression profiles. Neoplasia 9(2):166–180

    Article  PubMed  CAS  Google Scholar 

  20. Saito R, Mizuno M, Hatano M, Kumabe T, Yoshimoto T, Yoshida J (2004) Two different mechanisms of apoptosis resistance observed in interferon-beta induced apoptosis of human glioma cells. J Neurooncol 67(3):273–280

    Article  PubMed  Google Scholar 

  21. Papenfuss K, Cordier SM, Walczak H (2008) Death receptors as targets for anti-cancer therapy. J Cell Mol Med 12(6B):2566–2585

    Article  PubMed  CAS  Google Scholar 

  22. Wang Q, Ji Y, Wang X, Evers BM (2000) Isolation and molecular characterization of the 5′-upstream region of the human TRAIL gene. Biochem Biophys Res Commun 276(2):466–471

    Article  PubMed  CAS  Google Scholar 

  23. Borden EC (2007) Augmentation of effects of interferon-stimulated genes by reversal of epigenetic silencing: potential application to melanoma. Cytokine Growth Factor Rev 18(5–6):491–501

    Article  PubMed  CAS  Google Scholar 

  24. Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H (2004) Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J 23(15):3051–3060

    Article  PubMed  CAS  Google Scholar 

  25. Reynes G, Vila V, Martin M, Parada A, Fleitas T, Reganon E, Martinez-Sales V (2011) Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. J Neurooncol 102(1):35–41

    Article  PubMed  CAS  Google Scholar 

  26. La Ferla-Bruhl K, Westhoff MA, Karl S, Kasperczyk H, Zwacka RM, Debatin KM, Fulda S (2007) NF-kappaB-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene 26(4):571–582

    Article  PubMed  CAS  Google Scholar 

  27. Zou W, Yue P, Khuri FR, Sun SY (2008) Coupling of endoplasmic reticulum stress to CDDO-Me-induced up-regulation of death receptor 5 via a CHOP-dependent mechanism involving JNK activation. Cancer Res 68(18):7484–7492

    Article  PubMed  CAS  Google Scholar 

  28. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281(11):7260–7270

    Article  PubMed  CAS  Google Scholar 

  29. Matin SF, Rackley RR, Sadhukhan PC, Kim MS, Novick AC, Bandyopadhyay SK (2001) Impaired alpha-interferon signaling in transitional cell carcinoma: lack of p48 expression in 5637 cells. Cancer Res 61(5):2261–2266

    PubMed  CAS  Google Scholar 

  30. Romero-Weaver AL, Wang HW, Steen HC, Scarzello AJ, Hall VL, Sheikh F, Donnelly RP, Gamero AM (2010) Resistance to IFN-alpha-induced apoptosis is linked to a loss of STAT2. Mol Cancer Res 8(1):80–92

    Article  PubMed  CAS  Google Scholar 

  31. Du Z, Fan M, Kim JG, Eckerle D, Lothstein L, Wei L, Pfeffer LM (2009) Interferon-resistant Daudi cell line with a Stat2 defect is resistant to apoptosis induced by chemotherapeutic agents. J Biol Chem 284(41):27808–27815

    Article  PubMed  CAS  Google Scholar 

  32. Reu FJ, Bae SI, Cherkassky L, Leaman DW, Lindner D, Beaulieu N, MacLeod AR, Borden EC (2006) Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J Clin Oncol 24(23):3771–3779

    Article  PubMed  CAS  Google Scholar 

  33. Reu FJ, Leaman DW, Maitra RR, Bae SI, Cherkassky L, Fox MW, Rempinski DR, Beaulieu N, MacLeod AR, Borden EC (2006) Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res 66(5):2785–2793

    Article  PubMed  CAS  Google Scholar 

  34. Lesinski GB, Raig ET, Guenterberg K, Brown L, Go MR, Shah NN, Lewis A, Quimper M, Hade E, Young G, Chaudhury AR, Ladner KJ, Guttridge DC, Bouchard P, Carson WE 3rd (2008) IFN-alpha and bortezomib overcome Bcl-2 and Mcl-1 overexpression in melanoma cells by stimulating the extrinsic pathway of apoptosis. Cancer Res 68(20):8351–8360

    Article  PubMed  CAS  Google Scholar 

  35. Tracey L, Streck CJ, Du Z, Williams RF, Pfeffer LM, Nathwani AC, Davidoff AM (2010) NF-kappaB activation mediates resistance to IFN beta in MLL-rearranged acute lymphoblastic leukemia. Leukemia 24(4):806–812

    Article  PubMed  CAS  Google Scholar 

  36. Sheng Z, Li L, Zhu LJ, Smith TW, Demers A, Ross AH, Moser RP, Green MR (2010) A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications. Nat Med 16(6):671–677

    Article  PubMed  CAS  Google Scholar 

  37. Hata N, Sato M, Takaoka A, Asagiri M, Tanaka N, Taniguchi T (2001) Constitutive IFN-alpha/beta signal for efficient IFN-alpha/beta gene induction by virus. Biochem Biophys Res Commun 285(2):518–525

    Article  PubMed  CAS  Google Scholar 

  38. Chen HM, Tanaka N, Mitani Y, Oda E, Nozawa H, Chen JZ, Yanai H, Negishi H, Choi MK, Iwasaki T, Yamamoto H, Taniguchi T, Takaoka A (2009) Critical role for constitutive type I interferon signaling in the prevention of cellular transformation. Cancer Sci 100(3):449–456

    Article  PubMed  CAS  Google Scholar 

  39. Kulaeva OI, Draghici S, Tang L, Kraniak JM, Land SJ, Tainsky MA (2003) Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene 22(26):4118–4127

    Article  PubMed  CAS  Google Scholar 

  40. Wei J, Sun Z, Chen Q, Gu J (2006) Serum deprivation induced apoptosis in macrophage is mediated by autocrine secretion of type I IFNs. Apoptosis 11(4):545–554

    Article  PubMed  CAS  Google Scholar 

  41. Park SY, Seol JW, Lee YJ, Cho JH, Kang HS, Kim IS, Park SH, Kim TH, Yim JH, Kim M, Billiar TR, Seol DW (2004) IFN-gamma enhances TRAIL-induced apoptosis through IRF-1. Eur J Biochem 271(21):4222–4228

    Article  PubMed  CAS  Google Scholar 

  42. Huang Y, Walstrom A, Zhang L, Zhao Y, Cui M, Ye L, Zheng JC (2009) Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected macrophages. PLoS One 4(4):e5397

    Article  PubMed  Google Scholar 

  43. Ford E, Thanos D (2010) The transcriptional code of human IFN-beta gene expression. Biochim Biophys Acta 1799(3–4):328–336

    PubMed  CAS  Google Scholar 

  44. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655

    Article  PubMed  CAS  Google Scholar 

  45. Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K (2006) Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci USA 103(41):15136–15141

    Article  PubMed  CAS  Google Scholar 

  46. Park J, Kim K, Lee EJ, Seo YJ, Lim SN, Park K, Rho SB, Lee SH, Lee JH (2007) Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc Natl Acad Sci USA 104(43):17028–17033

    Article  PubMed  CAS  Google Scholar 

  47. Nozawa H, Oda E, Nakao K, Ishihara M, Ueda S, Yokochi T, Ogasawara K, Nakatsuru Y, Shimizu S, Ohira Y, Hioki K, Aizawa S, Ishikawa T, Katsuki M, Muto T, Taniguchi T, Tanaka N (1999) Loss of transcription factor IRF-1 affects tumor susceptibility in mice carrying the Ha-ras transgene or nullizygosity for p53. Genes Dev 13(10):1240–1245

    Article  PubMed  CAS  Google Scholar 

  48. Gao J, Senthil M, Ren B, Yan J, Xing Q, Yu J, Zhang L, Yim JH (2010) IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death Differ 17(4):699–709

    Article  PubMed  CAS  Google Scholar 

  49. Nozawa H, Oda E, Ueda S, Tamura G, Maesawa C, Muto T, Taniguchi T, Tanaka N (1998) Functionally inactivating point mutation in the tumor-suppressor IRF-1 gene identified in human gastric cancer. Int J Cancer 77(4):522–527

    Article  PubMed  CAS  Google Scholar 

  50. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6

    PubMed  CAS  Google Scholar 

  51. Smith CL, Hager GL (1997) Transcriptional regulation of mammalian genes in vivo. A tale of two templates. J Biol Chem 272(44):27493–27496

    Article  PubMed  CAS  Google Scholar 

  52. Bellail AC, Tse MC, Song JH, Phuphanich S, Olson JJ, Sun SY, Hao C (2010) DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas. J Cell Mol Med 14(6A):1303–1317

    Article  PubMed  CAS  Google Scholar 

  53. Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S (2008) Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68(15):6271–6280

    Article  PubMed  CAS  Google Scholar 

  54. Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8(8):808–815

    PubMed  CAS  Google Scholar 

  55. Li J, Anderson MG, Tucker LA, Shen Y, Glaser KB, Shah OJ (2009) Inhibition of Aurora B kinase sensitizes a subset of human glioma cells to TRAIL concomitant with induction of TRAIL-R2. Cell Death Differ 16(3):498–511

    Article  PubMed  CAS  Google Scholar 

  56. Kim EH, Yoon MJ, Kim SU, Kwon TK, Sohn S, Choi KS (2008) Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Res 68(1):266–275

    Article  PubMed  CAS  Google Scholar 

  57. Jiang CC, Chen LH, Gillespie S, Kiejda KA, Mhaidat N, Wang YF, Thorne R, Zhang XD, Hersey P (2007) Tunicamycin sensitizes human melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by up-regulation of TRAIL-R2 via the unfolded protein response. Cancer Res 67(12):5880–5888

    Article  PubMed  CAS  Google Scholar 

  58. Sun Y, Leaman DW (2005) Involvement of Noxa in cellular apoptotic responses to interferon, double-stranded RNA, and virus infection. J Biol Chem 280(16):15561–15568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zauli and Dr. Secchiero for TRAIL cDNA. This work was supported by grant from AIRC (Associazione Italiana Ricerca sul Cancro IG-10437), MIUR and Regione FVG (AITT-LR25/07). IM is a CIB (Consorzio Interuniversitario Biotecnologie) fellow.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Brancolini.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgorbissa, A., Tomasella, A., Potu, H. et al. Type I IFNs signaling and apoptosis resistance in glioblastoma cells. Apoptosis 16, 1229–1244 (2011). https://doi.org/10.1007/s10495-011-0639-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0639-4

Keywords

Navigation