Skip to main content

Advertisement

Log in

Enhancement of imatinib-induced apoptosis of BCR/ABL-expressing cells by nutlin-3 through synergistic activation of the mitochondrial apoptotic pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). However, relapses with emerging imatinib-resistance mutations in the BCR/ABL kinase domain pose a significant problem. Here, we demonstrate that nutlin-3, an inhibitor of Mdm2, inhibits proliferation and induces apoptosis more effectively in BCR/ABL-driven Ton.B210 cells than in those driven by IL-3. Moreover, nutlin-3 drastically enhanced imatinib-induced apoptosis in a p53-dependent manner in various BCR/ABL-expressing cells, which included primary leukemic cells from patients with CML blast crisis or Ph+ ALL and cells expressing the imatinib-resistant E255K BCR/ABL mutant. Nutlin-3 and imatinib synergistically induced Bax activation, mitochondrial membrane depolarization, and caspase-3 cleavage leading to caspase-dependent apoptosis, which was inhibited by overexpression of Bcl-XL. Imatinib did not significantly affect the nutlin-3-induced expression of p53 but abrogated that of p21. Furthermore, activation of Bax as well as caspase-3 induced by combined treatment with imatinib and nutlin-3 was observed preferentially in cells expressing p21 at reduced levels. The present study indicates that combined treatment with nutlin-3 and imatinib activates p53 without inducing p21 and synergistically activates Bax-mediated intrinsic mitochondrial pathway to induce apoptosis in BCR/ABL-expressing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldman JM, Melo JV (2003) Chronic myeloid leukemia-advances in biology and new approaches to treatment. N Engl J Med 349:1451–1464

    Article  PubMed  CAS  Google Scholar 

  2. Wong S, Witte ON (2004) The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 22:247–306

    Article  PubMed  CAS  Google Scholar 

  3. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653

    Article  PubMed  CAS  Google Scholar 

  4. O’Hare T, Corbin AS, Druker BJ (2006) Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev 16:92–99

    Article  PubMed  CAS  Google Scholar 

  5. Hughes TP, Kaeda J, Branford S et al (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349:1423–1432

    Article  PubMed  CAS  Google Scholar 

  6. Pietsch EC, Sykes SM, McMahon SB, Murphy ME (2008) The p53 family and programmed cell death. Oncogene 27:6507–6521

    Article  PubMed  CAS  Google Scholar 

  7. Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987

    Article  PubMed  CAS  Google Scholar 

  8. Shet AS, Jahagirdar BN, Verfaillie CM (2002) Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 16:1402–1411

    Article  PubMed  CAS  Google Scholar 

  9. Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  PubMed  CAS  Google Scholar 

  10. Shangary S, Wang S (2008) Small-molecule inhibitors of the MDM2-p53 protein–protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    Article  CAS  Google Scholar 

  11. Tovar C, Rosinski J, Filipovic Z et al (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103:1888–1893

    Article  PubMed  CAS  Google Scholar 

  12. Coll-Mulet L, Iglesias-Serret D, Santidrian AF et al (2006) MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107:4109–4114

    Article  PubMed  CAS  Google Scholar 

  13. Gu L, Zhu N, Findley HW, Zhou M (2008) MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia 22:730–739

    Article  PubMed  CAS  Google Scholar 

  14. Kojima K, Konopleva M, McQueen T, O’Brien S, Plunkett W, Andreeff M (2006) Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108:993–1000

    Article  PubMed  CAS  Google Scholar 

  15. Kojima K, Konopleva M, Samudio IJ et al (2005) MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106:3150–3159

    Article  PubMed  CAS  Google Scholar 

  16. Secchiero P, Barbarotto E, Tiribelli M et al (2006) Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 107:4122–4129

    Article  PubMed  CAS  Google Scholar 

  17. Stuhmer T, Chatterjee M, Hildebrandt M et al (2005) Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 106:3609–3617

    Article  PubMed  CAS  Google Scholar 

  18. Tabe Y, Sebasigari D, Jin L et al (2009) MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res 15:933–942

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg Z, Levav Y, Krichevsky S, Fibach E, Haupt Y (2004) Treatment of chronic myeloid leukemia cells with imatinib (STI571) impairs p53 accumulation in response to DNA damage. Cell Cycle 3:1188–1195

    PubMed  CAS  Google Scholar 

  20. Pierce A, Spooncer E, Wooley S et al (2000) Bcr-Abl protein tyrosine kinase activity induces a loss of p53 protein that mediates a delay in myeloid differentiation. Oncogene 19:5487–5497

    Article  PubMed  CAS  Google Scholar 

  21. Trotta R, Vignudelli T, Candini O et al (2003) BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 3:145–160

    Article  PubMed  CAS  Google Scholar 

  22. Wendel HG, de Stanchina E, Cepero E et al (2006) Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci USA 103:7444–7449

    Article  PubMed  CAS  Google Scholar 

  23. Klucher KM, Lopez DV, Daley GQ (1998) Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 91:3927–3934

    PubMed  CAS  Google Scholar 

  24. Kurosu T, Tsuji K, Kida A, Koyama T, Yamamoto M, Miura O (2007) Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase C-delta. Oncogene 26:2975–2987

    Article  PubMed  CAS  Google Scholar 

  25. Tohda S, Sakashita C, Fukuda T, Murakami N, Nara N (1999) Establishment of a double Philadelphia chromosome-positive acute lymphoblastic leukemia-derived cell line, TMD5: effects of cytokines and differentiation inducers on growth of the cells. Leuk Res 23:255–261

    Article  PubMed  CAS  Google Scholar 

  26. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066

    Article  PubMed  CAS  Google Scholar 

  27. Hahn WC, Dessain SK, Brooks MW et al (2002) Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22:2111–2123

    Article  PubMed  CAS  Google Scholar 

  28. Kurosu T, Ohki M, Wu N, Kagechika H, Miura O (2009) Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res 69:3927–3936

    Article  PubMed  CAS  Google Scholar 

  29. el-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  30. Miura O, Cleveland JL, Ihle JN (1993) Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol Cell Biol 13:1788–1795

    PubMed  CAS  Google Scholar 

  31. Chin H, Nakamura N, Kamiyama R, Miyasaka N, Ihle JN, Miura O (1996) Physical and functional interactions between Stat5 and the tyrosine-phosphorylated receptors for erythropoietin and interleukin-3. Blood 88:4415–4425

    PubMed  CAS  Google Scholar 

  32. Larson RA, Druker BJ, Guilhot F et al (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111:4022–4028

    Article  PubMed  CAS  Google Scholar 

  33. Feinstein E, Cimino G, Gale RP et al (1991) p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA 88:6293–6297

    Article  PubMed  CAS  Google Scholar 

  34. Neubauer A, He M, Schmidt CA, Huhn D, Liu ET (1993) Genetic alterations in the p53 gene in the blast crisis of chronic myelogenous leukemia: analysis by polymerase chain reaction based techniques. Leukemia 7:593–600

    PubMed  CAS  Google Scholar 

  35. Kuroda J, Puthalakath H, Cragg MS et al (2006) Bim and bad mediate imatinib-induced killing of Bcr/Abl + leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 103:14907–14912

    Article  PubMed  CAS  Google Scholar 

  36. Yamamoto M, Kurosu T, Kakihana K, Mizuchi D, Miura O (2004) The two major imatinib resistance mutations E255 K and T315I enhance the activity of BCR/ABL fusion kinase. Biochem Biophys Res Commun 319:1272–1275

    Article  PubMed  CAS  Google Scholar 

  37. Lotem J, Sachs L (1996) Control of apoptosis in hematopoiesis and leukemia by cytokines, tumor suppressor and oncogenes. Leukemia 10:925–931

    PubMed  CAS  Google Scholar 

  38. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1:639–649

    PubMed  CAS  Google Scholar 

  39. Zhang Y, Fujita N, Tsuruo T (1999) Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene 18:1131–1138

    Article  PubMed  CAS  Google Scholar 

  40. Keeshan K, Mills KI, Cotter TG, McKenna SL (2001) Elevated Bcr-Abl expression levels are sufficient for a haematopoietic cell line to acquire a drug-resistant phenotype. Leukemia 15:1823–1833

    PubMed  CAS  Google Scholar 

  41. Stoklosa T, Slupianek A, Datta M et al (2004) BCR/ABL recruits p53 tumor suppressor protein to induce drug resistance. Cell Cycle 3:1463–1472

    PubMed  CAS  Google Scholar 

  42. Ringshausen I, O’Shea CC, Finch AJ, Swigart LB, Evan GI (2006) Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10:501–514

    Article  PubMed  CAS  Google Scholar 

  43. Kitagawa M, Aonuma M, Lee SH, Fukutake S, McCormick F (2008) E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27:5303–5314

    Article  PubMed  CAS  Google Scholar 

  44. Chen W, Sun Z, Wang XJ et al (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34:663–673

    Article  PubMed  CAS  Google Scholar 

  45. Forster K, Obermeier A, Mitina O et al (2008) Role of p21(WAF1/CIP1) as an attenuator of both proliferative and drug-induced apoptotic signals in BCR-ABL-transformed hematopoietic cells. Ann Hematol 87:183–193

    Article  PubMed  CAS  Google Scholar 

  46. Keeshan K, Cotter TG, McKenna SL (2003) Bcr-Abl upregulates cytosolic p21WAF-1/CIP-1 by a phosphoinositide-3-kinase (PI3 K)-independent pathway. Br J Haematol 123:34–44

    Article  PubMed  CAS  Google Scholar 

  47. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  PubMed  CAS  Google Scholar 

  48. Kojima K, Konopleva M, Samudio IJ, Ruvolo V, Andreeff M (2007) Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res 67:3210–3219

    Article  PubMed  CAS  Google Scholar 

  49. Gruber F, Mustjoki S, Porkka K (2009) Impact of tyrosine kinase inhibitors on patient outcomes in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol 145:581–597

    Article  PubMed  CAS  Google Scholar 

  50. Fang G, Kim CN, Perkins CL et al (2000) CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 96:2246–2253

    PubMed  CAS  Google Scholar 

  51. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ (2000) Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 96:3195–3199

    PubMed  CAS  Google Scholar 

  52. Tipping AJ, Mahon FX, Zafirides G, Lagarde V, Goldman JM, Melo JV (2002) Drug responses of imatinib mesylate-resistant cells: synergism of imatinib with other chemotherapeutic drugs. Leukemia 16:2349–2357

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Masashi Aonuma for valuable suggestions. We thank Drs. George Q. Dailey, Robert Weinberg, Bert Vogelstein, Toshio Kitamura, and Shuji Tohda for the generous gifts of experimental materials. This study was supported in part by grants from Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurosu, T., Wu, N., Oshikawa, G. et al. Enhancement of imatinib-induced apoptosis of BCR/ABL-expressing cells by nutlin-3 through synergistic activation of the mitochondrial apoptotic pathway. Apoptosis 15, 608–620 (2010). https://doi.org/10.1007/s10495-010-0457-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0457-0

Keywords

Navigation