Skip to main content

Advertisement

Log in

Beta-amyloid peptides induces neuronal apoptosis via a mechanism independent of unfolded protein responses

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Accumulation of beta-amyloid (Aβ) peptides in senile plaques is one of the pathological hallmarks in Alzheimer's disease (AD), which can trigger apoptosis. We have previously demonstrated that Aβ triggered calcium release from the ER. Depletion of ER Ca2+ ions has been reported leading to unfolded protein responses (UPR). While hypothesis has been made about UPR and neurodegeneration in AD, little is known about the effects of extracellular accumulation of Aβ on UPR. We have shown previously that activation of PKR in Aβ-triggered apoptosis. Since UPR can trigger PKR, our study aims to elucidate whether extracellular accumulation of Aβ peptides induce UPR in cultured neurons. Our results showed that Aβ could not trigger UPR signalings including phosphorylation of PERK, alternative cleavage of xbp-1 mRNA and induction of transcription of xbp-1 and Gadd153. Taken together, our results suggest that extracellular accumulation of Aβ peptides induce apoptosis via a mechanism independent of UPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selkoe DJ, Schenk D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 2003; 43: 545–584.

    Article  PubMed  CAS  Google Scholar 

  2. Mattson MP. Pathways towards and away from Alzheimer's disease. Nature 2004; 430: 631–639.

    Article  PubMed  CAS  Google Scholar 

  3. Roth KA. Caspases, apoptosis, and Alzheimer disease: Causation, correlation, and confusion. J Neuropathol Exp Neurol 2001; 60: 829–838.

    PubMed  CAS  Google Scholar 

  4. Eckert A, Marques CA, Keil U, Schussel K, Muller WE. Increased apoptotic cell death in sporadic and genetic Alzheimer's disease. Ann NY Acad Sci 2003; 1010: 604–609.

    Article  PubMed  CAS  Google Scholar 

  5. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 1993; 90: 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  6. Yu MS, Lai SW, Lin KF, Fang JN, Yuen WH, Chang RCC. Characterization of polysaccharides from the flowers of Nerium indicum and their neuroprotective effects. Int J Mol Med 2004; 14: 917–924.

    PubMed  CAS  Google Scholar 

  7. Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J Neurochem 2002; 83: 1215–1225.

    Article  PubMed  CAS  Google Scholar 

  8. Suen KC, Yu MS, So KF, Chang RCC, Hugon J. Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in beta-amyloid peptide neurotoxicity. J Biol Chem 2003; 278: 49819–49827.

    Article  PubMed  CAS  Google Scholar 

  9. Tamagno E, Robino G, Obbili A, et al. H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp Neurol 2003; 180: 144–155.

    Article  PubMed  CAS  Google Scholar 

  10. Morishima Y, Gotoh Y, Zieg J, et al. Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 2001; 21: 7551–7560.

    PubMed  CAS  Google Scholar 

  11. Li R, Yang L, Lindholm K, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci 2004; 24: 1760–1771.

    Article  PubMed  CAS  Google Scholar 

  12. Tsukamoto E, Hashimoto Y, Kanekura K, Niikura T, Aiso S, Nishimoto I. Characterization of the toxic mechanism triggered by Alzheimer's amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res 2003; 73: 627–636.

    Article  PubMed  CAS  Google Scholar 

  13. Allen JW, Eldadah BA, Huang X, Knoblach SM, Faden AI. Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. J Neurosci Res 2001; 65: 45–53.

    Article  PubMed  CAS  Google Scholar 

  14. Suen KC, Lin KF, Elyaman W, So KF, Chang RCC, Hugon J. Reduction of calcium release from the endoplasmic reticulum could only provide partial neuroprotection against beta-amyloid peptide toxicity. J Neurochem 2003; 87: 1413–1426.

    Article  PubMed  CAS  Google Scholar 

  15. Williams BR. PKR; a sentinel kinase for cellular stress. Oncogene 1999; 18: 6112–6120.

    Article  PubMed  CAS  Google Scholar 

  16. Srivastava SP, Kumar KU, Kaufman RJ. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem 1998; 273: 2416–2423.

    Article  PubMed  CAS  Google Scholar 

  17. Peel AL, Bredesen DE. Activation of the cell stress kinase PKR in Alzheimer's disease and human amyloid precursor protein transgenic mice. Neurobiol Dis 2003; 14: 52–62.

    Article  PubMed  CAS  Google Scholar 

  18. Chang RCC, Wong AK, Ng HK, Hugon J. Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer's disease. Neuroreport 2002; 13: 2429–2432.

    Article  PubMed  CAS  Google Scholar 

  19. Onuki R, Bando Y, Suyama E, et al. An RNA-dependent protein kinase is involved in tunicamycin-induced apoptosis and Alzheimer's disease. EMBO J 2004; 23: 959–968.

    Article  PubMed  CAS  Google Scholar 

  20. He LM, Chen LY, Lou XL, Qu AL, Zhou Z, Xu T. Evaluation of beta-amyloid peptide 25-35 on calcium homeostasis in cultured rat dorsal root ganglion neurons. Brain Res 2002; 939: 65–75.

    Article  PubMed  CAS  Google Scholar 

  21. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1: 11–21.

    Article  PubMed  CAS  Google Scholar 

  22. Chevet E, Cameron PH, Pelletier MF, Thomas DY, Bergeron JJ. The endoplasmic reticulum: Integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol 2001; 11: 120–124.

    Article  PubMed  CAS  Google Scholar 

  23. Hajnoczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochem Biophys Res Commun 2003; 304: 445–454.

    Article  PubMed  CAS  Google Scholar 

  24. Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: Its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23: 222–229.

    Article  PubMed  CAS  Google Scholar 

  25. Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. J Cell Mol Med 2003; 7: 351–361.

    PubMed  CAS  Google Scholar 

  26. Rutkowski DT, Kaufman RJ. A trip to the ER: Coping with stress. Trends Cell Biol 2004; 14: 20–28.

    Article  PubMed  CAS  Google Scholar 

  27. Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuroanat 2004; 28: 51–65.

    Article  PubMed  CAS  Google Scholar 

  28. Michalak M, Robert Parker JM, Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002; 32: 269–278.

    Article  PubMed  CAS  Google Scholar 

  29. Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M. Induction of neuronal death by ER stress in Alzheimer's disease. J Chem Neuroanat 2004; 28: 67–78.

    Article  PubMed  CAS  Google Scholar 

  30. Mattson MP, Guo Q, Furukawa K, Pedersen WA. Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J Neurochem 1998; 70: 1–14.

    Article  PubMed  CAS  Google Scholar 

  31. Katayama T, Imaizumi K, Honda A, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J Biol Chem 2001; 276: 43446–43454.

    Article  PubMed  CAS  Google Scholar 

  32. Lin KF, Chang RCC, Suen KC, So KF, Hugon J. Modulation of calcium/calmodulin kinase-II provides partial neuroprotection against beta-amyloid peptide toxicity. Eur J Neurosci 2004; 19: 2047–2055.

    Article  PubMed  Google Scholar 

  33. Elyaman W, Terro F, Suen KC, Yardin C, Chang RC, Hugon J. BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis. Brain Res Mol Brain Res 2002; 109: 233–238.

    Article  PubMed  CAS  Google Scholar 

  34. Gilmore WJ, Kirby GM. Endoplasmic reticulum stress due to altered cellular redox status positively regulates murine hepatic CYP2A5 expression. J Pharmacol Exp Ther 2004; 308: 600–608.

    Article  PubMed  CAS  Google Scholar 

  35. Mengesdorf T, Althausen S, Oberndorfer I, Paschen W. Response of neurons to an irreversible inhibition of endoplasmic reticulum Ca(2+)-ATPase: Relationship between global protein synthesis and expression and translation of individual genes. Biochem J 2001; 356: 805–812.

    Article  PubMed  CAS  Google Scholar 

  36. Paschen W, Gissel C, Linden T, Althausen S, Doutheil J. Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. Brain Res Mol Brain Res 1998; 60: 115–122.

    Article  PubMed  CAS  Google Scholar 

  37. Mengesdorf T, Althausen S, Paschen W. Genes associated with pro-apoptotic and protective mechanisms are affected differently on exposure of neuronal cell cultures to arsenite. No indication for endoplasmic reticulum stress despite activation of grp78 and gadd153 expression. Brain Res Mol Brain Res 2002; 104: 227–239.

    Article  PubMed  CAS  Google Scholar 

  38. Lindqvist N, Vidal-Sanz M, Hallbook F. Single cell RT-PCR analysis of tyrosine kinase receptor expression in adult rat retinal ganglion cells isolated by retinal sandwiching. Brain Res Brain Res Protoc 2002; 10: 75–83.

    Article  PubMed  CAS  Google Scholar 

  39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  PubMed  CAS  Google Scholar 

  40. Ferreiro E, Oliveira CR, Pereira C. Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide. J Neurosci Res 2004; 76: 872–880.

    Article  PubMed  CAS  Google Scholar 

  41. Iuvone T, Esposito G, Esposito R, Santamaria R, Di RM, Izzo AA. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 2004; 89: 134–141.

    Article  PubMed  CAS  Google Scholar 

  42. Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92–96.

    Article  PubMed  CAS  Google Scholar 

  43. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107: 881–891.

    Article  PubMed  CAS  Google Scholar 

  44. Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest 2002; 110: 1383–1388.

    Article  PubMed  CAS  Google Scholar 

  45. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5: 897–904.

    Article  PubMed  CAS  Google Scholar 

  46. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 2002; 366: 585–594.

    Article  PubMed  CAS  Google Scholar 

  47. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11: 381–389.

    Article  PubMed  CAS  Google Scholar 

  48. Zhivotovsky B, Samali A, Gahm A, Orrenius S. Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 1999; 6: 644–651.

    Article  PubMed  CAS  Google Scholar 

  49. Rao RV, Hermel E, Castro-Obregon S, et al Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001; 276: 33869–33874.

    Article  PubMed  CAS  Google Scholar 

  50. Berridge MJ. The endoplasmic reticulum: A multifunctional signaling organelle. Cell Calcium 2002; 32: 235–249.

    Article  PubMed  CAS  Google Scholar 

  51. Kuida K. Caspase-9. Int J Biochem Cell Biol 2000; 32: 121–124.

    Article  PubMed  CAS  Google Scholar 

  52. Simmen T, Aslan JE, Blagoveshchenskaya AD, et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 2005; 24: 717–729.

    Article  PubMed  CAS  Google Scholar 

  53. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287: 664–666.

    Article  PubMed  CAS  Google Scholar 

  54. Fogarty MP, Downer EJ, Campbell V. A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons. Biochem J 2003; 371: 789–798.

    Article  PubMed  CAS  Google Scholar 

  55. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures. Eur J Pharmacol 1991; 207: 367–368.

    Article  PubMed  CAS  Google Scholar 

  56. Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 1994; 91: 12243–12247.

    Article  PubMed  CAS  Google Scholar 

  57. Dante S, Hauss T, Dencher NA. Insertion of externally administered amyloid beta peptide 25-35 and perturbation of lipid bilayers. Biochemistry 2003; 42: 13667–13672.

    Article  PubMed  CAS  Google Scholar 

  58. Verdier Y, Zarandi M, Penke B. Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: Binding sites and implications for Alzheimer's disease. J Pept Sci 2004; 10: 229–248.

    Article  PubMed  CAS  Google Scholar 

  59. Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 2002; 277: 32046–32053.

    Article  PubMed  CAS  Google Scholar 

  60. White JA, Manelli AM, Holmberg KH, Van Eldik LJ, Ladu MJ. Differential effects of oligomeric and fibrillar amyloid-beta1-42 on astrocyte-mediated inflammation. Neurobiol Dis 2005; 18: 459–465.

    Article  PubMed  CAS  Google Scholar 

  61. Kadowaki H, Nishitoh H, Urano F, et al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 2005; 12: 19–24.

    Article  PubMed  CAS  Google Scholar 

  62. Ghribi O, Herman MM, Pramoonjago P, Spaulding NK, Savory J. GDNF regulates the A beta-induced endoplasmic reticulum stress response in rabbit hippocampus by inhibiting the activation of gadd 153 and the JNK and ERK kinases. Neurobiol Dis 2004; 16: 417–427.

    Article  PubMed  CAS  Google Scholar 

  63. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: Role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 2003; 278: 20915–20924.

    Article  PubMed  CAS  Google Scholar 

  64. Gausdal G, Gjertsen BT, Fladmark KE, Demol H, Vandekerckhove J, Doskeland SO. Caspase-dependent, geldanamycin-enhanced cleavage of co-chaperone p23 in leukemic apoptosis. Leukemia 2004; 18: 1989–1996.

    Article  PubMed  CAS  Google Scholar 

  65. Ohara M, Hayashi T, Kusunoki Y, Miyauchi M, Takata T, Sugai M. Caspase-2 and caspase-7 are involved in cytolethal distending toxin-induced apoptosis in Jurkat and MOLT-4 T-cell lines. Infect Immun 2004; 72: 871–879.

    Article  PubMed  CAS  Google Scholar 

  66. Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL. Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 2004; 18: 238–251.

    Article  PubMed  CAS  Google Scholar 

  67. Rizzuto R, Pinton P, Carrington W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998; 280: 1763–1766.

    Article  PubMed  CAS  Google Scholar 

  68. Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 2004; 165: 347–356.

    Article  PubMed  CAS  Google Scholar 

  69. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403: 98–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Chuen-Chung Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, MS., Suen, KC., Kwok, NS. et al. Beta-amyloid peptides induces neuronal apoptosis via a mechanism independent of unfolded protein responses. Apoptosis 11, 687–700 (2006). https://doi.org/10.1007/s10495-006-5540-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-5540-1

Keywords

Navigation