Skip to main content

Advertisement

Log in

Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We have earlier reported that overexpression of HABP1 in fibroblast cells causes perturbed cell growth, extensive vacuolation and restricted entry to the S-phase, finally leading to apoptosis (Biochem Biophys Res Commun 2003; 300: 686–693). In the present study, we investigate the regulation of HABP1 expression in cisplatin induced apoptosis in HeLa cells. Apoptosis induced in HeLa cells at 24 h of cisplatin treatment was confirmed by nuclear fragmentation, increase in subdiploid population and the enhanced activation of ERK and upregulation of p53. In association with apoptosis induction, an upregulation of HABP1 expression was observed in HeLa cells at 18 and 24 h of cisplatin treatment. Quantification of HABP1 expression by flow cytometry confirmed a two-fold increase in total intracellular HABP1 expression at 24 h of cisplatin treatment. Under the same condition the HABP1 transcript level measured by semi quantitative RT PCR showed 2.5-fold increase ascertaining transcriptional regulation of HABP1 during cisplatin induced apoptosis. Further, in normal HeLa cells though a small amount of HABP1 can be detected in nucleus, but with apoptosis induction the protein is mainly concentrating around the nuclear periphery at 18 h of cisplatin treatment and is present both in the nucleus as well as in the cytosol at 24 h of treatment, suggesting its nuclear translocation during apoptosis. To substantiate our findings prior to the cisplatin treatment, the expression of HABP1 was reduced by small interfering RNA mediated knockdown. We observed a reduction in apoptotic cell population in cisplatin treated HeLa cells with disrupted HABP1 conferring resistance to cisplatin induced apoptosis. We report here that HABP1 upregulation in the cell is important for cisplatin induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toole BP. Hyaluronan promotes the malignant phenotype. Glycobiology 2002; 12: 37R–42R.

    Article  PubMed  CAS  Google Scholar 

  2. Toole BP, Whelan J, eds. The role and regulation of tumor associated hyaluronan. In Biology of Hyaluronan, Wiley, Chicester Ciba Foundation Symposium, New York, 1989: 150–169.

  3. Laurent TC, Fraser JR. Hyaluronan. FASEB J 1992; 7: 2397–2404.

    Google Scholar 

  4. Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 1993; 13: 1233–1241.

    Google Scholar 

  5. Toole BP. Hyaluronan: From extracellular glue to pericellular cue. Nature 2004; 4: 528–539.

    CAS  Google Scholar 

  6. Eggli PS, Graber W. Association of hyaluronan with rat vascular endothelial cells and smooth muscle cells. J Histochem Cytochem 1995; 43: 689–697.

    PubMed  CAS  Google Scholar 

  7. Evanko SP, Wight TN. Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem 1999; 47: 1331–1341.

    PubMed  CAS  Google Scholar 

  8. Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/AKT cell survival pathway. J Bio Chem 2002; 277: 38013–38020.

    Article  CAS  Google Scholar 

  9. Toole BP. Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Bio 1990; 2: 839–844.

    Article  CAS  Google Scholar 

  10. Gupta S, Datta K. Possible role of hyaluronectin on cell adhesion in rat histiocytoma. Exp Cell Res 1991; 195: 386–394.

    Article  PubMed  CAS  Google Scholar 

  11. Ranganathan S, Bharadwaj A, Datta K. Hyaluronan mediates sperm motility by enhancing phosphorylation of proteins including hyaluronan binding protein. Cell Mol Bio Res 1995; 41: 467–476.

    CAS  Google Scholar 

  12. Ranganathan S, Ganguly AK, Datta K. Evidence for presence of hyaluronan binding protein on spermatozoa and its possible involvement in sperm function. Mol Reprod Dev 1994; 38: 69–76.

    Article  PubMed  CAS  Google Scholar 

  13. Deb TB, Datta K. Molecular cloning of human fibroblast hyaluronic acid binding protein confirms its identity with P-32, a protein co-purified with splicing factor SF2. J Bio Chem 1996; 269: 2206–2212.

    Google Scholar 

  14. Krainer AR, Mayeda A, Kozak D, Binns G. Functional expression of cloned human splicing factor SF2: Homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell 1991; 66: 383–394.

    Article  PubMed  CAS  Google Scholar 

  15. Ghebrehiwet B, Lim BL, Peerschke EI, Willis CA, Reid KB. Isolation, cDNA cloning, and overexpression of a 33-kDa cell surface glycoprotein that binds to the globular “Heads” of C1q. J Exp Med 1994; 179: 1809–1821.

    Article  PubMed  CAS  Google Scholar 

  16. Majumdar M, Datta K. Assignment of cDNA encoding hyaluronic acid binding protein 1 to human chromosome 17 p12–13. Genomics 1998; 51: 476–477.

    Article  PubMed  CAS  Google Scholar 

  17. Honore B, Madsen P, Rasmussen HH, Vandekerckhove J, Celis JE, Leffers H. Cloning and expression of a cDNA covering the complete coding region of the P32 subunit of human pre-mRNA splicing factor SF2. Gene 1993; 134: 283–287.

    Article  PubMed  CAS  Google Scholar 

  18. Bharadwaj A, Ghosh I, Sengupta A, et al. Stage-specific expression of proprotein form of hyaluronan binding protein 1 (HABP1) during spermatogenesis in rat. Mol Reprod Dev 2002; 62: 223–232.

    Article  PubMed  CAS  Google Scholar 

  19. Matthews DA, Russell WC. Adenovirus core protein V interacts with p32 a protein which is associated with both the mitochondria and the nucleus. J Gen Virol 1998; 79: 1677–1685.

    PubMed  CAS  Google Scholar 

  20. Dedio J, Jahnen-Dechent W, Bachmann M, Muller-Ester IW. The multiligand-binding protein gC1qR, putative C1q receptor, is a mitochondrial protein. J Immunol 1998; 160(7): 3534–3542.

    PubMed  CAS  Google Scholar 

  21. Majumdar M, Meenakshi J, Goswami SK, Datta K. Hyaluronan binding protein 1 (HABP1)/C1QBP/p32 is an endogenous substrate for MAP kinase and is translocated to the nucleus upon mitogenic stimulation. Biochem Biophys Res Commun 2002a; 291: 829

    Article  CAS  Google Scholar 

  22. Ghebrehiwet B, Peerschke EI. Structure and function of gC1q-R: A multiligand binding cellular protein. Immunobiology 1998; 199: 225–238.

    PubMed  CAS  Google Scholar 

  23. Soltys BJ, Kang D, Gupta RS. Localization of P32 protein (gC1q-R) in mitochondria and at specific extramitochondrial locations in normal tissues. Histochem Cell Bio 2000; 114: 245–255.

    CAS  Google Scholar 

  24. Gupta S, Babu BR, Datta K. Purification, partial characterization of rat kidney hyaluronic acid binding protein and its localization on cell surface. Eur J Cell Bio 1991; 56: 58–67.

    CAS  Google Scholar 

  25. Herwald H, Dedio J, Kellner R, Loos M, Muller-Ester W. Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the C1q receptor. J Bio Chem 1996; 271: 13040–13047.

    Article  CAS  Google Scholar 

  26. Lim BL, Reid KBM, Ghebrehiwet B, Peerschke EIB, Leigh LAE, Preissner KT. The binding protein for globular heads of complement C1q, gC1qR. Functional expression and characterization as a novel vitronectin binding factor. J Bio Chem 1996; 271: 26739–26744.

    Article  CAS  Google Scholar 

  27. Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: Identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci USA 1996; 93: 8552–8557.

    Article  PubMed  CAS  Google Scholar 

  28. Paul DB, Kuhns MC, McNamara AL, Pottage JC Jr, Spear GT. Short-term stability of HIV provirus levels in the peripheral blood of HIV-infected individuals. J Med Virol 1995; 47: 292–297.

    PubMed  CAS  Google Scholar 

  29. Yu L, Loewenstein PM, Zhang Z, Green M. Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. J Virol 1995a; 69: 3017–3023.

    PubMed  CAS  Google Scholar 

  30. Simos G, Georgatos SD. The lamin B receptor-associated protein p34 shares sequence homology and antigenic determinants with the splicing factor 2-associated protein p32. FEBS Lett 1994; 346: 225–228.

    Article  PubMed  CAS  Google Scholar 

  31. Seytter T, Lottspeich F, Neupert W, Schwarz E. Mam33p, an oligomeric, acidic protein in the mitochondrial matrix of Saccharomyces cerevisiae is related to the human complement receptor gC1q-R.Yeast 1998; 14(4): 303–310.

    Article  PubMed  CAS  Google Scholar 

  32. Sunayama J, Ando Y, Itoh N, et al. Physical and functional interaction between BH3-only protein Hrk and mitochondrial pore forming protein p32. Cell Death and Diff 2004; 11: 771–781.

    Article  CAS  Google Scholar 

  33. Kittlesten DJ, Kimberly A, Chianese-Bullock, Yao ZQ, Braciale TJ, Hahn YS. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest 2000; 106: 239–249.

    Google Scholar 

  34. Yao ZQ, Nguyen DT, Hiotellis AI, Hahn YS. Hepatitis C virus core protein inhibits human T lymphocyte responses by a complement-dependent regulatory pathway. Viral Immunol 2001; 14: 277–295.

    Article  PubMed  CAS  Google Scholar 

  35. Luo Y, Yu H, Peterlin BM. Cellular protein modulates effects of Human immunodeficiency virus type I Rev. J Virol 1994; 68: 3850–3856.

    PubMed  CAS  Google Scholar 

  36. Tange TO, Jensen TH, Kjems J. In vitro interaction between human immunodeficiency virus type 1 Rev protein and splicing factor ASF/SF2-associated protein, p32. J Bio Chem 1996; 271: 10066–10072.

    Article  CAS  Google Scholar 

  37. Brokstad KA, Kalland KH, Russell WC, Matthews DA. Mitochondrial protein p32 can accumulate in the nucleus. Biochem Biophys Res Commun 2001; 281: 1161–1169.

    Article  CAS  Google Scholar 

  38. Storz P, Hausser A, Link G, et al. Protein kinase C [micro] is regulated by the multifunctional chaperon protein p32. J Bio Chem 2000; 275: 24601–24607.

    Article  CAS  Google Scholar 

  39. Xu Z, Hirasawa A, Shinoura H, Tsujimoto G. Interaction of the alpha (1B)-adrenergic receptor with gC1q-R, a multifunctional protein. J Bio Chem 1999; 274: 21149–21154.

    Article  CAS  Google Scholar 

  40. Rao CM, Deb TB, Gupta S, Datta K. Regulation of cellular phosphorylation of hyaluronan binding protein and its role in the formation of second messenger. Biochim Biophys Acta 1997; 1336: 387–393.

    PubMed  CAS  Google Scholar 

  41. Meenakshi J, Anupama, Goswami SK, Datta K. Constitutive expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR) in normal fibroblast cells perturbs its growth characteristics and induces apoptosis. Biochem Biophys Res Commun 2003; 300: 686–693.

    Article  PubMed  CAS  Google Scholar 

  42. Sengupta A, Tyagi RK, Datta K. Trunctaed variants of hyaluronan-binding protein 1 bind hyaluronan and induce identical morphological aberrations in COS-1 cells. Biochem J 2004; 380: 837–844.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang J, Zhang Y, Krainer AR, Xu RM. Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci USA 1999; 96: 3572–3577.

    Article  PubMed  CAS  Google Scholar 

  44. Yao ZQ, Eisen-vandervelde, Ray, Suma, Hahn YS. HCV core/gC1qR arrests T cell cycle progression through stabilization of the cell cycle inhibitor p27kip1. Virology 2003; 314: 271–282.

    Article  PubMed  CAS  Google Scholar 

  45. Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC, Akusjarvi G. The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 1999; 18: 1014–1024.

    Article  PubMed  CAS  Google Scholar 

  46. Chattopadhyay C, Hawke D, Kobayashi R, Maity SN. Human p32, interacts with B subunit of the CCAAT-binding factor, CBF/NF-γ, and inhibits CBF-mediated transcription activation in vitro. Nuc Acids Res 2004; 32: 3632–3641.

    Article  CAS  Google Scholar 

  47. Marschall M, Marzi A, Siepen Jochmann R, et al. Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J Bio Chem 2005; 280: 33357 – 33367.

    Google Scholar 

  48. Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin induced apoptosis. J Bio Chem 2000; 275: 39435–39443.

    Article  CAS  Google Scholar 

  49. Mallick J, Datta K. HABP1/p32/gC1qR induces aberrant growth and morphology in Schizosaccharomyces pombe through its N-terminal α helix. Exp Cell Res 2005; 309(2): 250–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Datta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamal, A., Datta, K. Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis. Apoptosis 11, 861–874 (2006). https://doi.org/10.1007/s10495-006-5396-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-5396-4

Keywords

Navigation