Skip to main content

Advertisement

Log in

Fenofibrate induces apoptotic injury in cultured human hepatocytes by inhibiting phosphorylation of Akt

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fibric acid derivatives have a potent and effective lipid-lowering action, however, the use of these compounds is sometimes limited due to the occurrence of hepatic injury. In the present study, we characterized cell injury induced by fenofibrate in cultured human hepatocytes. Fenofibrate caused a loss of cell viability and nuclear damage as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling or by DNA electrophoresis, in which caspase activation is involved. The cell injury was accompanied by the shrinkage and the translocation of phosphatidyl serine from inner membrane to the outer membrane as determined by annexin V stain. The mRNA expression for bcl-2 was reduced by fenofibrate. An immunofluorescent stain with antiserum raised against phosphorylated Akt revealed that fenofibrate inhibited insulin-stimulated phosphorylation of Akt. Like fenofibrate, several compounds that inhibit the phosphorylation of Akt, including wortmannin, SH-6 and a high concentration (100 μ M) of SB203580, reduced the viability of cultured human hepatocytes. Both nuclear damage and cell injury induced by fenofibrate were reversed by insulin in a concentration-dependent manner. In contrast, bezafibrate or 8(S)-hydroxyeicosatetraenoic acid had no hepatotoxic action. These findings suggest that fenofibrate causes caspase-dependent apoptosis in human hepatocytes by inhibiting phosphorylation of Akt, in which PPARα is not involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gotto AM. Jr. Triglyceride as a risk factor for coronary artery disease. Am J Cardiol 1998; 82: 22Q–25Q.

    PubMed  Google Scholar 

  2. Robins SJ. PPARalpha ligands and clinical trials: Cardiovascular risk reduction with fibrates. J Cardiovasc Risk 2001; 8: 195–201.

    CAS  PubMed  Google Scholar 

  3. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–2093.

    CAS  PubMed  Google Scholar 

  4. Tugwood JD, Issemann I, Anderson RG, et al. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 1992; 11: 433–439.

    CAS  PubMed  Google Scholar 

  5. Heller F, Harvengt C. Effects of clofibrate, bezafibrate, fenofibrate and probucol on plasma lipolytic enzymes in normolipaemic subjects. Eur J Clin Pharmacol 1983; 25: 57–63.

    CAS  PubMed  Google Scholar 

  6. Sharobeem KM, Madden BP, Millner R, et al. Acute renal failure after cardiopulmonary bypass: A possible association with drugs of the fibrate group. J Cardiovasc Pharmacol Ther 2000; 5: 33–39.

    CAS  PubMed  Google Scholar 

  7. Lelouch S, Pelletier G, Sinico M, Ducreux M, Etienne JP. Fenofibrate-induced acute hepatitis with pseudo-cholangitis. Gastroenterol Clin Biol 1992; 16: 597–599.

    CAS  PubMed  Google Scholar 

  8. Najib J. Fenofibrate in the treatment of dyslipidemia: A review of the data as they relate to the new suprabioavailable tablet formulation. Clin Ther 2002; 24: 2022–2050.

    CAS  PubMed  Google Scholar 

  9. Muscari A, Puddu GM, Puddu P. Lipid-lowering drugs: Are adverse effects predictable and reversible? Cardiology 2002; 97: 115–121.

    CAS  PubMed  Google Scholar 

  10. Sasaki J, Yamamoto K, Ageta M. Effects of fenofibrate on high-density lipoprotein particle size in patients with hyperlipidemia: A randomized, double-blind, placebo-controlled, multicenter, crossover study. Clin Ther 2002; 24: 1614–1626.

    CAS  PubMed  Google Scholar 

  11. Krempf M, Rohmer V, Farnier M. Efficacy and safety of micronised fenofibrate in a randomised double-blind study comparing four doses from 200 mg to 400 mg daily with placebo in patients with hypercholesterolemia. Diabetes Metab 2000; 26: 184–191.

    CAS  PubMed  Google Scholar 

  12. Goll V, Viollon-Abadie C, Nicod L, Richert L. Peroxisome proliferators induce apoptosis and decrease DNA synthesis in hepatoma cell lines. Hum Exp Toxicol 2000; 19: 193–202.

    CAS  PubMed  Google Scholar 

  13. Canuto RA, Muzio G, Bonelli G, et al. Peroxisome proliferators induce apoptosis in hepatoma cells. Cancer Detect Prev 1998; 22: 357–366.

    CAS  PubMed  Google Scholar 

  14. Perrone CE, Shao L, Williams GM. Effect of rodent hepatocarcinogenic peroxisome proliferators on fatty acyl-CoA oxidase, DNA synthesis, and apoptosis in cultured human and rat hepatocytes. Toxicol Appl Pharmacol 1998; 150: 277–286.

    CAS  PubMed  Google Scholar 

  15. Jiao HL, Zhao BL. Cytotoxic effect of peroxisome proliferator fenofibrate on human HepG2 hepatoma cell line and relevant mechanisms. Toxicol Appl Pharmacol 2002; 185: 172–179.

    CAS  PubMed  Google Scholar 

  16. Maiguma T, Fujisaki K, Itoh Y, et al. Cell-specific toxicity of fibrates in human embryonal rhabdomyosarcoma cells. Naunyn-Schmiedebergs Arch Pharmacol 2003; 67: 289–296.

    Google Scholar 

  17. Panaretakis T, Shabalina IG, Grander D, Shoshan MC, DePierre JW. Reactive oxygen species and mitochondria mediate the induction of apoptosis in human hepatoma HepG2 cells by the rodent peroxisome proliferator and hepatocarcinogen, perfluorooctanoic acid. Toxicol Appl Pharmacol 2001; 173: 56–64.

    CAS  PubMed  Google Scholar 

  18. Atarod EB, Kehrer JP. Dissociation of oxidant production by peroxisome proliferator-activated receptor ligands from cell death in human cell lines. Free Radic Biol Med 2004; 37: 36–47.

    CAS  PubMed  Google Scholar 

  19. Goetze S, Eilers F, Bungenstock A, et al. PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 2002; 293: 1431–1437.

    CAS  PubMed  Google Scholar 

  20. Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999; 253: 210–229.

    CAS  PubMed  Google Scholar 

  21. Goswami R, Dawson SA, Dawson G. Multiple polyphosphoinositide pathways regulate apoptotic signalling in a dorsal root ganglion derived cell line. J Neurosci Res 2000; 59: 136–144.

    CAS  PubMed  Google Scholar 

  22. Kubota T, Fujisaki K, Itoh Y, et al. Apoptotic injury in cultured human hepatocytes induced by HMG-CoA reductase inhibitors. Biochem Pharmacol 2004; 67: 2175–2186.

    CAS  PubMed  Google Scholar 

  23. Shino Y, Itoh Y, Kubota T, et al. Role of poly(ADP-ribose) polymerase in cisplatin-induced injury in LLC-PK1 cells. Free Rad Biol Med 2003; 35: 966–977.

    CAS  PubMed  Google Scholar 

  24. Lee EH, Wan XH, Song J, et al. Lens epithelial cell death and reduction of anti-apoptotic protein Bcl-2 in human anterior polar cataracts. Mol Vision 2002; 8: 235–240.

    CAS  Google Scholar 

  25. Fadok VA, Voelker DR, Campbell PA et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992; 148: 2207–2216.

    CAS  PubMed  Google Scholar 

  26. van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 1996; 24: 131–139.

    PubMed  Google Scholar 

  27. Zhu H, Fearnhead HO, Cohen GM. An ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells. FEBS Lett 1995; 374: 303–308.

    CAS  PubMed  Google Scholar 

  28. Muga SJ, Thuillier P, Pavone A, et al. 8S-lipoxygenase products activate peroxisome proliferator-activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth Differ 2000; 11: 447–454.

    CAS  PubMed  Google Scholar 

  29. Yu K, Bayona W, Kallen CB, et al. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 1995; 270: 23975–23983.

    Article  CAS  PubMed  Google Scholar 

  30. Varet J, Vincent L, Mirshahi P, et al. Fenofibrate inhibits angiogenesis in vitro and in vivo. Cell Mol Life Sci 2003; 60: 810–819.

    CAS  PubMed  Google Scholar 

  31. Ishiyama M, Miyazono Y, Sasamoto K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 1997; 44: 1299–1305.

    Article  CAS  Google Scholar 

  32. Yeh CJ, His BL, Faulk WP. Propidium iodide as a nuclear marker in immunofluorescence. II. Use with cellular identification and viability studies. J Immunol Methods 1981; 43: 269–275.

    CAS  PubMed  Google Scholar 

  33. Hall PA. Assessing apoptosis: A critical survey. Endocr Relat Cancer 1999; 6: 3–8.

    CAS  PubMed  Google Scholar 

  34. Salvesen GS, Dixit VM. Caspases: Intracellular signaling by proteolysis. Cell 1997; 91: 443–446.

    CAS  PubMed  Google Scholar 

  35. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316.

    CAS  PubMed  Google Scholar 

  36. Xiang J, Chao DT, Korsmeyer SJ. BAX-induced cell death may not require interleukin 1b-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996; 93: 14559–14563.

    Article  CAS  PubMed  Google Scholar 

  37. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med 1997; 3: 614–620.

    CAS  PubMed  Google Scholar 

  38. Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17: 3878–3885.

    CAS  PubMed  Google Scholar 

  39. Kozikowski AP, Sun H, Brognard J, Dennis PA. Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase, Akt. J Am Chem Soc 2003; 125: 1144–1145.

    CAS  PubMed  Google Scholar 

  40. Meuillet EJ, Mahadevan D, Vankayalapati H, et al. Specific inhibition of the Akt1 pleckstrin homology domain by D-3-deoxy-phosphatidyl-myo-inositol analogues. Mol Cancer Ther 2003; 2: 389–399.

    CAS  PubMed  Google Scholar 

  41. Webster CR, Srinivasulu U, Ananthanarayanan M, Suchy FJ, Anwer MS. Protein kinase B/Akt mediates cAMP- and cell swelling-stimulated Na+/taurocholate cotransport and Ntcp translocation. J Biol Chem 2002; 277: 28578–28583.

    CAS  PubMed  Google Scholar 

  42. Lali FV, Hunt AE, Turner SJ, Foxwell BM. The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J Biol Chem 2000; 275: 7395–7402.

    CAS  PubMed  Google Scholar 

  43. Pugazhenthi S, Miller E, Sable C, et al. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. J Biol Chem 1999; 274: 27529–27535.

    CAS  PubMed  Google Scholar 

  44. Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000; 275: 10761–10766.

    CAS  PubMed  Google Scholar 

  45. Harvengt C, Desager JP. Lack of pharmacokinetic interaction of colestipol and fenofibrate in volunteers. Eur J Clin Pharmacol 1980a; 17: 459–463.

    CAS  Google Scholar 

  46. Harvengt C, Desager JP. Pharmacokinetics of fenofibrate in man. Nouv Presse Med 1980b; 9: 3725–3727.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, T., Yano, T., Fujisaki, K. et al. Fenofibrate induces apoptotic injury in cultured human hepatocytes by inhibiting phosphorylation of Akt. Apoptosis 10, 349–358 (2005). https://doi.org/10.1007/s10495-005-0809-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-0809-3

Navigation