Skip to main content
Log in

Novel Method for Superposing 3D Digital Models for Monitoring Orthodontic Tooth Movement

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantitative three-dimensional analysis of orthodontic tooth movement (OTM) is possible by superposition of digital jaw models made at different times during treatment. Conventional methods rely on surface alignment at palatal soft-tissue areas, which is applicable to the maxilla only. We introduce two novel numerical methods applicable to both maxilla and mandible. The OTM from the initial phase of multi-bracket appliance treatment of ten pairs of maxillary models were evaluated and compared with four conventional methods. The median range of deviation of OTM for three users was 13–72% smaller for the novel methods than for the conventional methods, indicating greater inter-observer agreement. Total tooth translation and rotation were significantly different (ANOVA, p < 0.01) for OTM determined by use of the two numerical and four conventional methods. Directional decomposition of OTM from the novel methods showed clinically acceptable agreement with reference results except for vertical translations (deviations of medians greater than 0.6 mm). The difference in vertical translational OTM can be explained by maxillary vertical growth during the observation period, which is additionally recorded by conventional methods. The novel approaches are, thus, particularly suitable for evaluation of pure treatment effects, because growth-related changes are ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alexander, R. M. Optimum strengths for bones liable to fatigue and accidental fracture. J. Theor. Biol. 109(4):621–636, 1984. https://doi.org/10.1016/S0022-5193(84)80162-9.

    Article  PubMed  CAS  Google Scholar 

  2. An, K., I. Jang, D.-S. Choi, P.-G. Jost-Brinkmann, and B.-K. Cha. Identification of a stable reference area for superimposing mandibular digital models. J. Orofac. Orthop. 76(6):508–519, 2015. https://doi.org/10.1007/s00056-015-0310-8.

    Article  PubMed  Google Scholar 

  3. Aragón, M. L. C., L. F. Pontes, L. M. Bichara, C. Flores-Mir, and D. Normando. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur. J. Orthod. 38(4):429–434, 2016. https://doi.org/10.1093/ejo/cjw033.

    Article  PubMed  Google Scholar 

  4. Ashmore, J. L., B. F. Kurland, G. J. King, T. T. Wheeler, J. Ghafari, and D. S. Ramsay. A 3-dimensional analysis of molar movement during headgear treatment. Am. J. Orthod. Dentofac. Orthop. 121(1):18–29, 2002. https://doi.org/10.1067/mod.2002.120687.

    Article  Google Scholar 

  5. Barreto, M. S., J. Faber, C. J. Vogel, and T. M. Araujo. Reliability of digital orthodontic setups. Angle Orthod. 86(2):255–259, 2016. https://doi.org/10.2319/120914-890.1.

    Article  PubMed  Google Scholar 

  6. Beaupre, G. S., T. E. Orr, and D. R. Carter. An approach for time-dependent bone modeling and remodeling—theoretical development. J. Orthop. Res. 8(5):651–661, 1990. https://doi.org/10.1002/jor.1100080506.

    Article  PubMed  CAS  Google Scholar 

  7. Bell, G. H. Bone as a mechanical Engineering problem. In: The Biochemistry and Physiology of Bone, edited by G. H. Bourne. New York: Elsevier, 1956, pp. 27–52.

    Chapter  Google Scholar 

  8. Bourauel, C., L. Keilig, A. Rahimi, S. Reimann, A. Ziegler, and A. Jäger. Computer-aided analysis of the biomechanics of tooth movements. Int. J. Comput. Dent. 10(1):25–40, 2007.

    PubMed  CAS  Google Scholar 

  9. Bourauel, C., D. Vollmer, and A. Jäger. Anwendung von Bone-Remodeling-Theorien zur Simulation orthodontischer Zahnbewegungen. J. Orofac. Orthop. 61(4):266, 2000. https://doi.org/10.1007/s000560050012.

    Article  PubMed  CAS  Google Scholar 

  10. Bro-Nielsen, M., C. Gramkow, and S. Kreiborg. Non-rigid image registration using bone growth model. In: CVRMed-MRCAS’97, edited by J. Troccaz, E. Grimson, and R. Mösges. Berlin: Springer, 1997, pp. 1–12.

    Google Scholar 

  11. Burstone, C. J. The biomechanics of tooth movement. In: Vistas in Orthodontics: Presented to Alton W. Moore, edited by B. S. Kraus, and R. A. Riedel. Philadelphia: Lea & Febiger, 1962, pp. 197–213.

    Google Scholar 

  12. Cazoulat, G., D. Owen, M. M. Matuszak, J. M. Balter, and K. K. Brock. Biomechanical deformable image registration of longitudinal lung CT images using vessel information. Phys. Med. Biol. 61(13):4826–4839, 2016. https://doi.org/10.1088/0031-9155/61/13/4826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cha, B. K., J. Y. Lee, P.-G. Jost-Brinkmann, and N. Yoshida. Analysis of tooth movement in extraction cases using three-dimensional reverse engineering technology. Eur. J. Orthod. 29(4):325–331, 2007. https://doi.org/10.1093/ejo/cjm019.

    Article  PubMed  Google Scholar 

  14. Chen, G., S. Chen, X. Y. Zhang, R. P. Jiang, Y. Liu, F. H. Shi, and T. M. Xu. Stable region for maxillary dental cast superimposition in adults, studied with the aid of stable miniscrews. Orthod. Craniofac. Res. 14(2):70–79, 2011. https://doi.org/10.1111/j.1601-6343.2011.01510.x.

    Article  PubMed  CAS  Google Scholar 

  15. Choi, J.-I., B.-K. Cha, P.-G. Jost-Brinkmann, D.-S. Choi, and I.-S. Jang. Validity of palatal superimposition of 3-dimensional digital models in cases treated with rapid maxillary expansion and maxillary protraction headgear. Korean J. Orthod. 42(5):235–241, 2012. https://doi.org/10.4041/kjod.2012.42.5.235.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Choi, D.-S., Y.-M. Jeong, I. Jang, P. G. Jost-Brinkmann, and B.-K. Cha. Accuracy and reliability of palatal superimposition of three-dimensional digital models. Angle Orthod. 80(4):497–503, 2010. https://doi.org/10.2319/101309-569.1.

    Article  PubMed  Google Scholar 

  17. Christou, P., and S. Kiliaridis. Vertical growth-related changes in the positions of palatal rugae and maxillary incisors. Am. J. Orthod. Dentofac. Orthop. 133(1):81–86, 2008. https://doi.org/10.1016/j.ajodo.2007.07.009.

    Article  Google Scholar 

  18. Cristofolini, L. In vitro evidence of the structural optimization of the human skeletal bones. J. Biomech. 48(5):787–796, 2015. https://doi.org/10.1016/j.jbiomech.2014.12.010.

    Article  PubMed  Google Scholar 

  19. Ganser, K. A., H. Dickhaus, R. Metzner, and C. R. Wirtz. A deformable digital brain atlas system according to Talairach and Tournoux. Med. Image Anal. 8(1):3–22, 2004. https://doi.org/10.1016/j.media.2003.06.001.

    Article  PubMed  Google Scholar 

  20. Ganzer, N., I. Feldmann, P. Liv, and L. Bondemark. A novel method for superimposition and measurements on maxillary digital 3D models-studies on validity and reliability. Eur. J. Orthod. 2017. https://doi.org/10.1093/ejo/cjx029.

    Article  Google Scholar 

  21. Goracci, C., L. Franchi, A. Vichi, and M. Ferrari. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur. J. Orthod. 38(4):422–428, 2016. https://doi.org/10.1093/ejo/cjv077.

    Article  PubMed  Google Scholar 

  22. Grauer, D., and W. R. Proffit. Accuracy in tooth positioning with a fully customized lingual orthodontic appliance. Am. J. Orthod. Dentofac. Orthop. 140(3):433–443, 2011. https://doi.org/10.1016/j.ajodo.2011.01.020.

    Article  Google Scholar 

  23. Han, L., H. Dong, J. R. McClelland, L. Han, D. J. Hawkes, and D. C. Barratt. A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs. Med. Image Anal. 39:87–100, 2017. https://doi.org/10.1016/j.media.2017.04.003.

    Article  PubMed  Google Scholar 

  24. Han, L., J. H. Hipwell, B. Eiben, D. Barratt, M. Modat, S. Ourselin, and D. J. Hawkes. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images. IEEE Trans. Med. Imaging 33(3):682–694, 2014. https://doi.org/10.1109/TMI.2013.2294539.

    Article  PubMed  Google Scholar 

  25. Hayashi, K., J. Uechi, M. Murata, and I. Mizoguchi. Comparison of maxillary canine retraction with sliding mechanics and a retraction spring: a three-dimensional analysis based on a midpalatal orthodontic implant. Eur. J. Orthod. 26(6):585–589, 2004. https://doi.org/10.1093/ejo/26.6.585.

    Article  PubMed  Google Scholar 

  26. Hocevar, R. A. Understanding, planning, and managing tooth movement: orthodontic force system theory. Am. J. Orthod. 80(5):457–477, 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Jang, I., M. Tanaka, Y. Koga, S. Iijima, J. H. Yozgatian, B. K. Cha, and N. Yoshida. A novel method for the assessment of three-dimensional tooth movement during orthodontic treatment. Angle Orthod. 79(3):447–453, 2009. https://doi.org/10.2319/042308-225.1.

    Article  PubMed  Google Scholar 

  28. Keilig, L., K. Piesche, A. Jäger, and C. Bourauel. Applications of surface-surface matching algorithms for determination of orthodontic tooth movements. Comput. Methods Biomech. Biomed. Eng. 6(5–6):353–359, 2003. https://doi.org/10.1080/10255840310001634403.

    Article  CAS  Google Scholar 

  29. Li, S., Z. Xia, S. S.-Y. Liu, G. Eckert, and J. Chen. Three-dimensional canine displacement patterns in response to translation and controlled tipping retraction strategies. Angle Orthod. 85(1):18–25, 2015. https://doi.org/10.2319/011314-45.1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maintz, J. B. A., and M. A. Viergever. A survey of medical image registration. Med. Image Anal. 2(1):1–36, 1998. https://doi.org/10.1016/S1361-8415(01)80026-8.

    Article  PubMed  CAS  Google Scholar 

  31. Meikle, M. C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur. J. Orthod. 28(3):221–240, 2006. https://doi.org/10.1093/ejo/cjl001.

    Article  PubMed  Google Scholar 

  32. Mortazavi, H., and M. Baharvand. Review of common conditions associated with periodontal ligament widening. Imaging Sci. Dent. 46(4):229–237, 2016. https://doi.org/10.5624/isd.2016.46.4.229.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murray, C. D. The physiological principle of minimum work I: The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A. 12(3):207–214, 1926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Murray, C. D. The physiological principle of minimum work II: Oxygen exchange in capillaries. Proc. Natl. Acad. Sci. 12(5):299–304, 1926. https://doi.org/10.1073/pnas.12.5.299.

    Article  PubMed  CAS  Google Scholar 

  35. Nalcaci, R., A. B. Kocoglu-Altan, A. A. Bicakci, F. Ozturk, and H. Babacan. A reliable method for evaluating upper molar distalization: superimposition of three-dimensional digital models. Korean J. Orthod. 45(2):82–88, 2015. https://doi.org/10.4041/kjod.2015.45.2.82.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nickel, J. C., H. Liu, D. B. Marx, and L. R. Iwasaki. Effects of mechanical stress and growth on the velocity of tooth movement. Am. J. Orthod. Dentofac. Orthop. 145(4 Suppl):S74–81, 2014. https://doi.org/10.1016/j.ajodo.2013.06.022.

    Article  Google Scholar 

  37. Osipenko, M. A., M. Y. Nyashin, and Y. I. Nyashin. Center of resistance and center of rotation of a tooth: the definitions, conditions of existence, properties. Russ. J. Biomech. 1999(1):5–15, 1999.

    Google Scholar 

  38. Pauls, A. H. Therapeutic accuracy of individualized brackets in lingual orthodontics. J. Orofac. Orthop. 71(5):348–361, 2010. https://doi.org/10.1007/s00056-010-1027-3.

    Article  PubMed  Google Scholar 

  39. Quinn, R. S., and D. Ken Yoshikawa. A reassessment of force magnitude in orthodontics. Am. J. Orthod. 88(3):252–260, 1985. https://doi.org/10.1016/S0002-9416(85)90220-9.

    Article  PubMed  CAS  Google Scholar 

  40. Ren, Y., J. C. Maltha, M. A. van’t Hof, and A. M. Kuijpers-Jagtman. Optimum force magnitude for orthodontic tooth movement: a mathematic model. Am. J. Orthod. Dentofac. Orthop. 125(1):71–77, 2004. https://doi.org/10.1016/j.ajodo.2003.02.005.

    Article  Google Scholar 

  41. Ricketts, R. M. Bioprogressive Therapy (2nd ed.). Denver: Rocky Mountain Orthodontics, p. 457, 1984.

    Google Scholar 

  42. Schroeder, H. E. The Periodontium. Handbook of Microscopic Anatomy, Vol. 5/5. Berlin: Springer, 1986.

    Google Scholar 

  43. Schumacher, G.-H. (ed.). Anatomie und Biochemie der Zähne (3rd ed.). Berlin: Verl. Volk und Gesundheit, 1983.

    Google Scholar 

  44. Stein, M. Large sample properties of simulations using latin hypercube sampling. Technometrics 29(2):143–151, 1987. https://doi.org/10.2307/1269769.

    Article  Google Scholar 

  45. Storey, E., and R. Smith. Force in orthodontics and its relation to tooth movement. Aust. J. Dent. 56(1):11–18, 1952.

    Google Scholar 

  46. Thilander, B. Dentoalveolar development in subjects with normal occlusion. A longitudinal study between the ages of 5 and 31 years. Eur. J. Orthod. 31(2):109–120, 2009. https://doi.org/10.1093/ejo/cjn124.

    Article  PubMed  Google Scholar 

  47. Thiruvenkatachari, B., M. Al-Abdallah, N. C. Akram, J. Sandler, and K. O’Brien. Measuring 3-dimensional tooth movement with a 3-dimensional surface laser scanner. Am. J. Orthod. Dentofac. Orthop. 135(4):480–485, 2009. https://doi.org/10.1016/j.ajodo.2007.03.040.

    Article  Google Scholar 

  48. Tong, H., D. Kwon, J. Shi, N. Sakai, R. Enciso, and G. T. Sameshima. Mesiodistal angulation and faciolingual inclination of each whole tooth in 3-dimensional space in patients with near-normal occlusion. Am. J. Orthod. Dentofac. Orthop. 141(5):604–617, 2012. https://doi.org/10.1016/j.ajodo.2011.12.018.

    Article  Google Scholar 

  49. van Leeuwen, E. J., A. M. Kuijpers-Jagtman, J. W. von den Hoff, F. A. D. T. G. Wagener, and J. C. Maltha. Rate of orthodontic tooth movement after changing the force magnitude: an experimental study in beagle dogs. Orthod. Craniofac. Res. 13(4):238–245, 2010. https://doi.org/10.1111/j.1601-6343.2010.01500.x.

    Article  PubMed  Google Scholar 

  50. Vasilakos, G., R. Schilling, D. Halazonetis, and N. Gkantidis. Assessment of different techniques for 3D superimposition of serial digital maxillary dental casts on palatal structures. Sci. Rep. 7(1):5838, 2017. https://doi.org/10.1038/s41598-017-06013-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Viergever, M. A., J. B. A. Maintz, S. Klein, K. Murphy, M. Staring, and J. P. W. Pluim. A survey of medical image registration—under review. Med. Image Anal. 33:140–144, 2016. https://doi.org/10.1016/j.media.2016.06.030.

    Article  PubMed  Google Scholar 

  52. Weinans, H., R. Huiskes, and H. J. Grootenboer. The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25(12):1425–1441, 1992. https://doi.org/10.1016/0021-9290(92)90056-7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ian Davies, copy-editor, for English language revision.

Conflict of interest

We declare that this article is free from conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falko Schmidt.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Appendix: Derivation of equations

Appendix: Derivation of equations

In order to derive a set of equations for EFM that approximates actual OTM for individual teeth from dental models obtained at different stages of treatment, on the basis of mechanical and biomechanical principles, mechanical considerations were reduced to the one-dimensional case for each individual direction of movement. Hence, force Fi acting on a tooth because of translational ITM in direction i is related to an effective stresses state \(\bar{\sigma }_{{\text{l}}i}\) by:

$$F_{i} = \bar{\sigma }_{{\text{l}}i} \cdot \bar{A}_{{\text{R}}i} .$$
(5)

Here the effective surface areas \(\bar{A}_{{\text{R}}i}\) were approximated as the projection areas of the tooth roots normal to the direction of action, and were taken from the literature (Table 1) because patient-specific data are usually unknown. Because these data do not conform with tooth coordinate systems, to estimate adequate effective projection areas we assumed a simplified box-shaped root and introduced corrections for tooth position for rotation about the mesial and vestibular axes:

$$\begin{aligned} \bar{A}_{\text{Rm}} & = 2 \hat{A}_{\text{m}} \cos \hat{\xi } + \hat{A}_{\text{o}} \sin \hat{\xi } \\ \bar{A}_{\text{Rv}} & = 2 \hat{A}_{\text{v}} \cos \hat{\eta } + \hat{A}_{\text{o}} \sin \hat{\eta } \\ \bar{A}_{\text{Ro}} & = \left( { \hat{A}_{\text{o}} \cos \hat{\xi } + 2 \hat{A}_{\text{m}} \sin \hat{\xi }} \right)\cos \hat{\varphi } + 2 \hat{A}_{\text{v}} \sin \hat{\eta } \\ \end{aligned}$$
(6)

Here, indices m, v, and o represent the axis directions (mesial, vestibular, and occlusal) and the hat symbols indicate literature data. The angles \( \hat{\xi } \) and \( \hat{\eta } \) are the so-called mean tip and torque angles of the long axes of the different teeth relative to the occlusal direction (Fig. 2); these, also, were taken from the literature (Table 1). A factor of 2 for mesial and vestibular projection areas was added to take into account the presence of both a tension side and an opposing compression side in any type of horizontal movement, whereas only one side and, therefore, one mechanism acts for vertical movement.

A linear relationship between ITM and OTM was chosen such that:

$$ D_{i} = R \cdot \bar{\sigma }_{i} \cdot \Delta T, $$
(7)

where D is linear OTM during a time period ΔT and R represents the rate of remodeling. In contrast with the model proposed by Beaupre et al.,6 which assumes a multi-linear rate of remodeling, our simplified approach assumes a constant rate for resorption and apposition, and continuous and linear movement of all teeth from initial to final positions. We also assumed that the effective stress, \( \bar{\sigma } \), is a representative stress stimulus affecting bone remodeling. Combining Eqs. (5) and (7), the force on tooth t can be written in vector notation as:

$$ \varvec{F} = \frac{{\varvec{D} \circ \bar{\varvec{A}}_{\text{R}} }}{R \Delta T}, $$
(8)

where ∘ denotes the Schur product.

The moment exerted on a tooth can be represented by a force couple of the same magnitude but in the opposite direction:

$$ \varvec{M} = \bar{\varvec{l}}_{\text{Fc}} \times \bar{\varvec{F}}_{\text{c}} + \bar{\varvec{l}}_{\text{Fa}} \times \bar{\varvec{F}}_{\text{a}} = \left( {\bar{\varvec{l}}_{\text{Fc}} - \bar{\varvec{l}}_{\text{Fa}} } \right) \times \bar{\varvec{F}}_{\text{c}} . $$
(9)

Here \( \bar{\varvec{F}} \) represents effective forces generated in the cervical and apical regions of the tooth root, denoted by indices c and a, respectively, that are separated by the CR. Assuming, also, linear stress distribution with a root at the CR and the projection areas approximated by a rectangle in the cervical region and a triangle in the apical region, the effective lever arms \(\bar{\varvec{l}}_{\text{F}}\) of the forces can be given as:

$$ \bar{\varvec{l}}_{\text{Fc}} = - \frac{2}{3}\varvec{l}_{\text{CR}} \,\,{\text{and}}\,\,\bar{\varvec{l}}_{\text{Fa}} = \frac{1}{2}(\varvec{l}_{\text{R}} - \varvec{l}_{\text{CR}} )\,\,{\text{with}}\,\,\varvec{l}_{\text{CR}} = \hat{k}_{\text{CR}} \varvec{l}_{\text{R}} , $$
(10)

where vector \( \varvec{l}_{\text{R}} \) describes the tooth axis in the region of the tooth root and \( \varvec{l}_{\text{CR}} \) its portion from the alveolar crest to the CR. Both quantities were derived from literature data (Table 1, Fig. 2). Furthermore, on the basis of the definition of the CR and the assumption of a uniform distribution of the effective stress over the root projection area for exertion of a pure force, the cervical and apical areas were considered to be of the same size.

The total rotational OTM Φ was transformed into average translation in both regions, assuming angular movements are generally small, by use of the relationship:

$$ \bar{\varvec{D}}_{\text{r}} \approx \varvec{l}_{{\bar{\sigma }}} \times {\varvec{\Phi}}\,\,{\text{with}}\,\,\varvec{l}_{{\bar{\sigma }_{\text{c}} }} = - \frac{1}{2}\varvec{l}_{\text{CR}} , $$
(11)

where \( \varvec{l}_{{\bar{\sigma }_{\text{c}} }} \) is the distance from the CR to the point in the cervical region where the representative stress \( \bar{\sigma } \) is present for all directions. Combining Eqs. (5), (7), (9), (10) and (11) and rearranging, the moment exerted on a single tooth can finally be written as:

$$ \varvec{M}_{\text{CR}} = \frac{{ (\varvec{l}_{\text{R}} \times {\varvec{\Phi}}) \circ \bar{\varvec{A}}_{\text{R}} }}{R \Delta T} \times \varvec{l}_{\text{R}} \left( {\frac{{\hat{k}_{\text{CR}} }}{8} + \frac{{\hat{k}_{\text{CR}}^{2} }}{24}} \right)\,\,{\text{with}}\,\,\bar{\varvec{A}}_{\text{Rc}} = - \frac{1}{2}\bar{\varvec{A}}_{\text{R}} . $$
(12)

Similarly to the previous approach, for MRV, linear and rotational movement were resolved and remodeling volumes were estimated individually. Likewise, distinct volumes were calculated separately for all axial directions. Thus, the remodeling volume for pure

$$\varvec{V}_{\text{l}} = \bar{\varvec{A}}_{\text{R}} \circ \varvec{D}.$$
(13)

translation, \(\varvec{V}_{\text{l}}\), was approximated for a single tooth by use of:

By following the simplifications described above for rotational movement about the CR, the remodeling volume, \( \varvec{V}_{\text{c}} \), in the cervical region was considered to be wedge-shaped whereas \( \varvec{V}_{\text{a}} \) in the apical region was approximated as a tetrahedron, by using:

$$ \varvec{V}_{\text{c}} = \frac{{\varvec{A}_{\text{c}} \circ \varvec{h}_{\text{c}} }}{2}\,\,{\text{and}}\,\,\varvec{V}_{\text{a}} = \frac{{\varvec{A}_{\text{a}} \circ \varvec{h}_{\text{a}} }}{3}, $$
(14)

where \( \varvec{A}_{\text{c}} \) and \( \varvec{A}_{\text{a}} \) represent the projection areas of the tooth root in the cervical and apical regions. Again, assuming small angular movement of the teeth, vector \( \varvec{h} \) containing the heights of the remodeling volumes resulting from rotational OTM was approximated by:

$$ \varvec{h}_{\text{c}} \approx \varvec{l}_{\text{CR}} \times {\varvec{\Phi}}\,\,{\text{and}}\,\,\varvec{h}_{\text{a}} \approx (\varvec{l}_{\text{R}} - \varvec{l}_{\text{CR}} ) \times {\varvec{\Phi}} $$
(15)

for cervical and apical regions, respectively. Keeping in mind the assumption that \( \varvec{A}_{\text{c}} = \varvec{A}_{\text{a}} = \bar{\varvec{A}}_{\text{R}} /2 \), the volume for pure rotation about the CR for each tooth was finally derived by using the equation:

$$ \varvec{V}_{\text{r}} = \varvec{V}_{\text{c}} + \varvec{V}_{\text{a}} \approx \frac{{\varvec{A}_{\text{c}} \circ \left( {\varvec{l}_{\text{CR}} \times {\varvec{\Phi}}} \right)}}{2} + \frac{{\varvec{A}_{\text{a}} \circ \left( {\left( {\varvec{l}_{\text{R}} - \varvec{l}_{\text{CR}} } \right) \times {\varvec{\Phi}}} \right)}}{3} = \bar{\varvec{A}}_{\text{R}} \circ \left( {\varvec{l}_{\text{R}} \times {\varvec{\Phi}}} \right)\left( {\frac{1}{6} + \frac{{\hat{k}_{\text{CR}} }}{12}} \right). $$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, F., Kilic, F., Piro, N.E. et al. Novel Method for Superposing 3D Digital Models for Monitoring Orthodontic Tooth Movement. Ann Biomed Eng 46, 1160–1172 (2018). https://doi.org/10.1007/s10439-018-2029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2029-3

Keywords

Navigation