Skip to main content
Log in

Finite Element Model and Validation of Nasal Tip Deformation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Beaty, M. M., W. K. Dyer, 2nd, and M. W. Shawl. The quantification of surgical changes in nasal tip support. Arch. Facial Plast. Surg. 4:82–91, 2002.

    Article  PubMed  Google Scholar 

  2. Beekhuis, G. J. Nasal obstruction after rhinoplasty: etiology, and techniques for correction. Laryngoscope 86:540–548, 1976.

    Article  CAS  PubMed  Google Scholar 

  3. Conci, R. A., F. H. Tomazi, P. Y. Noritomi, J. V. da Silva, G. G. Fritscher, and C. Heitz. Comparison of neck screw and conventional fixation techniques in mandibular condyle fractures using 3-dimensional finite element analysis. J. Oral. Maxillofac. Surg. 73:1321–1327, 2015.

    Article  PubMed  Google Scholar 

  4. Cummings, C. W. Cummings Otolaryngology Head & Neck Surgery. Philadelphia, PA: Elsevier, 2005.

    Google Scholar 

  5. de Sainte Croix, M. M., D. Gauld, A. H. Forgie, and R. Lowe. Three-dimensional imaging of human cutaneous forearm bite marks in human volunteers over a 4 day period. J. Forensic Leg. Med. 40:34–39, 2016.

    Article  PubMed  Google Scholar 

  6. Dobratz, E. J., V. Tran, and P. A. Hilger. Comparison of techniques used to support the nasal tip and their long-term effects on tip position. Arch. Facial Plast. Surg. 12:172–179, 2010.

    Article  PubMed  Google Scholar 

  7. Frank-Ito, D. O., J. S. Kimbell, P. Laud, G. J. Garcia, and J. S. Rhee. Predicting postsurgery nasal physiology with computational modeling: current challenges and limitations. Otolaryngol. Head Neck Surg. 151:751–759, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hariri, B. M., J. S. Rhee, and G. J. Garcia. Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Laryngoscope 125:2635–2641, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huttenlocher, D. P., G. A. Klanderman, and W. J. Rucklidge. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15:850–863, 1993.

    Article  Google Scholar 

  10. Kimbell, J. S., D. O. Frank, P. Laud, G. J. Garcia, and J. S. Rhee. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J. Biomech. 46:2634–2643, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, J. S., D. C. Lee, D. H. Ha, S. W. Kim, and D. W. Cho. Redefining the septal L-strut in septal surgery. PLoS ONE 10:e0119996, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee, S. J., K. Liong, K. M. Tse, and H. P. Lee. Biomechanics of the deformity of septal L-Struts. Laryngoscope 120:1508–1515, 2010.

    Article  PubMed  Google Scholar 

  13. Lee, M. K., and S. P. Most. Evidence-based medicine: rhinoplasty. Facial Plast. Surg. Clin. N. Am. 23:303–312, 2015.

    Article  Google Scholar 

  14. Leipner, A., R. Baumeister, M. J. Thali, M. Braun, E. Dobler, and L. C. Ebert. Multi-camera system for 3D forensic documentation. Forensic Sci. Int. 261:123–128, 2016.

    Article  PubMed  Google Scholar 

  15. Manuel, C. T., R. Leary, D. E. Protsenko, and B. J. Wong. Nasal tip support: a finite element analysis of the role of the caudal septum during tip depression. Laryngoscope 124:649–654, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martins, P. A. L. S., R. M. Natal Jorge, and A. J. M. Ferreira. A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42:135–147, 2006.

    Article  Google Scholar 

  17. Most, S. P. Analysis of outcomes after functional rhinoplasty using a disease-specific quality-of-life instrument. Arch. Facial Plast. Surg. 8:306–309, 2006.

    Article  PubMed  Google Scholar 

  18. Motherway, J. A., P. Verschueren, G. Van der Perre, J. Van der Sloten, and M. D. Gilchrist. The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. J. Biomech. 42:2129–2135, 2009.

    Article  PubMed  Google Scholar 

  19. Neaman, K. C., A. K. Boettcher, V. H. Do, C. Mulder, M. Baca, J. D. Renucci, and D. L. VanderWoude. Cosmetic rhinoplasty: revision rates revisited. Aesthet. Surg. J. 33:31–37, 2013.

    PubMed  Google Scholar 

  20. Oliaei, S., C. Manuel, D. Protsenko, and B. J. F. Wong. Biomechanical Properties of Facial Cartilage Grafts, Vol. 37. New York: Springer, 2013.

    Google Scholar 

  21. Patel, R. G., G. J. Garcia, D. O. Frank-Ito, J. S. Kimbell, and J. S. Rhee. Simulating the nasal cycle with computational fluid dynamics. Otolaryngol. Head Neck Surg. 152:353–360, 2015.

    Article  PubMed  Google Scholar 

  22. Rhee, J. S., D. E. Cannon, D. O. Frank, and J. S. Kimbell. Role of virtual surgery in preoperative planning: assessing the individual components of functional nasal airway surgery. Arch. Facial Plast. Surg. 14:354–359, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rhee, J. S., S. S. Pawar, G. J. Garcia, and J. S. Kimbell. Toward personalized nasal surgery using computational fluid dynamics. Arch. Facial Plast. Surg. 13:305–310, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Robertson, S. A., R. M. Kimble, K. J. Storey, E. L. Gee Kee, and K. A. Stockton. 3D photography is a reliable method of measuring infantile haemangioma volume over time. J. Pediatr. Surg. 51(9):1552–1556, 2016.

    Article  PubMed  Google Scholar 

  25. Rodman, R., and R. Kridel. A staging system for revision rhinoplasty: a review. JAMA Facial Plast. Surg. 18(4):305–311, 2016.

    Article  PubMed  Google Scholar 

  26. Shamouelian, D., R. P. Leary, C. T. Manuel, R. Harb, D. E. Protsenko, and B. J. Wong. Rethinking nasal tip support: a finite element analysis. Laryngoscope 125:326–330, 2015.

    Article  PubMed  Google Scholar 

  27. Wofford, M. R., J. S. Kimbell, D. O. Frank-Ito, V. Dhandha, K. A. McKinney, G. M. Fleischman, C. S. Ebert, Jr, A. M. Zanation, and B. A. Senior. A computational study of functional endoscopic sinus surgery and maxillary sinus drug delivery. Rhinology 53:41–49, 2015.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our funding sources: NIH/NHLBI (1 R01 HL105215-01), NIH/NIBIB P41EB015890, Laser Microbeam and Medical Program (LAMMP), and the Hewett Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus T. Manuel.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuel, C.T., Harb, R., Badran, A. et al. Finite Element Model and Validation of Nasal Tip Deformation. Ann Biomed Eng 45, 829–838 (2017). https://doi.org/10.1007/s10439-016-1729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1729-9

Keywords

Navigation