Skip to main content
Log in

A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Uncertainty that arises from measurement error and parameter estimation can significantly affect the interpretation of musculoskeletal simulations; however, these effects are rarely addressed. The objective of this study was to develop an open-source probabilistic musculoskeletal modeling framework to assess how measurement error and parameter uncertainty propagate through a gait simulation. A baseline gait simulation was performed for a male subject using OpenSim for three stages: inverse kinematics, inverse dynamics, and muscle force prediction. A series of Monte Carlo simulations were performed that considered intrarater variability in marker placement, movement artifacts in each phase of gait, variability in body segment parameters, and variability in muscle parameters calculated from cadaveric investigations. Propagation of uncertainty was performed by also using the output distributions from one stage as input distributions to subsequent stages. Confidence bounds (5–95%) and sensitivity of outputs to model input parameters were calculated throughout the gait cycle. The combined impact of uncertainty resulted in mean bounds that ranged from 2.7° to 6.4° in joint kinematics, 2.7 to 8.1 N m in joint moments, and 35.8 to 130.8 N in muscle forces. The impact of movement artifact was 1.8 times larger than any other propagated source. Sensitivity to specific body segment parameters and muscle parameters were linked to where in the gait cycle they were calculated. We anticipate that through the increased use of probabilistic tools, researchers will better understand the strengths and limitations of their musculoskeletal simulations and more effectively use simulations to evaluate hypotheses and inform clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ackland, D. C., Y. C. Lin, and M. G. Pandy. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J. Biomech. 45:1463–1471, 2012.

    Article  PubMed  Google Scholar 

  2. Anderson, F. C., and M. G. Pandy. Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34:153–161, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, F. C., S. R. Goldberg, M. G. Pandy, and S. L. Delp. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis. J. Biomech. 37:731–737, 2004.

    Article  PubMed  Google Scholar 

  4. Andrews, J. G., and S. P. Misht. Methods for investigating the sensitivity of joint resultants to body segment parameter variations. J. Biomech. 29:651–654, 1996.

    Article  CAS  PubMed  Google Scholar 

  5. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164, 2006.

    Article  PubMed  Google Scholar 

  7. Chandler, R. F., C. E. Clauser, J. T. McConville, H. M. Reynolds, and J. W. Young. Investigation of Inertial Properties of the Human Body. Ohio: AMRL-TR-74, 1975.

  8. Chiari, L., U. D. Croce, A. Leardini, and A. Cappozzo. Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait Posture 21:197–211, 2005.

    Article  PubMed  Google Scholar 

  9. Croce, U. D., A. Cappozzo, and D. Kerrigan. Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med. Biol. Eng. Comput. 37:155–161, 1999.

    Article  PubMed  Google Scholar 

  10. Curran-Everett, D. Explorations in statistics: confidence intervals. Adv. Physiol. Educ. 33:87–90, 2009.

    Article  PubMed  Google Scholar 

  11. De Groote, F., A. Van Campen, I. Jonkers, and J. De Schutter. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J. Biomech. 43:1876–1883, 2010.

    Article  PubMed  Google Scholar 

  12. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Delp, S. L., A. S. Arnold, R. A. Speers, and C. A. Moore. Hamstrings and Psoas lengths during normal and crouch gait: implications for muscle-tendon surgery. J. Orthop. Res. 14:144–151, 1996.

    Article  CAS  PubMed  Google Scholar 

  14. Delp, S. L., A. S. Arnold, and S. J. Piazza. Graphics-based modeling and analysis of gait abnormalities. Biomed. Mater. Eng. 8:227–240, 1998.

    CAS  PubMed  Google Scholar 

  15. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  16. Fitzpatrick, C. K., C. W. Clary, P. J. Laz, and P. J. Rullkoetter. Relative contributions of design, alignment, and loading variability in knee replacement mechanics. J. Orthop. Res. 30:2015–2024, 2012.

    Article  PubMed  Google Scholar 

  17. Fregly, B. J., J. A. Reinbolt, K. L. Rooney, K. H. Mitchell, and T. L. Chmielewski. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54:1687–1695, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Friederich, J. A., and R. A. Brand. Muscle fiber architecture in the human lower limb. J. Biomech. 23:91–95, 1990.

    Article  CAS  PubMed  Google Scholar 

  20. Gao, B., and N. N. Zheng. Investigation of soft tissue movement during level walking: translations and rotations of skin markers. J. Biomech. 41:3189–3195, 2008.

    Article  PubMed  Google Scholar 

  21. Garner, B. A., and M. G. Pandy. Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31:207–220, 2003.

    Article  PubMed  Google Scholar 

  22. Goehler, C. M., and W. M. Murray. The sensitivity of endpoint forces produced by the extrinsic muscles of the thumb to posture. J. Biomech. 43:1553–1559, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Halder, A., and S. Mahadevan. Probability, Reliability and Statistical Methods in Engineering Design. New York, NY: Wiley, 2000.

    Google Scholar 

  24. Hamby, D. M. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32:135–154, 1994.

    Article  CAS  PubMed  Google Scholar 

  25. Herzog, W., A. C. Guimaraes, M. G. Anton, and K. A. Carter-Erdman. Moment-length relations of rectus femoris muscles of speed skaters/cyclists and runners. Med. Sci. Sport. Exerc. 23:1289–1296, 1991.

    CAS  Google Scholar 

  26. Horsman, K., H. F. J. M. Koopman, F. C. T. van der Helm, L. P. Prosé, and H. E. J. Veeger. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22:239–247, 2007.

    Article  Google Scholar 

  27. Langenderfer, J. E., P. J. Laz, A. J. Petrella, and P. J. Rullkoetter. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics. J. Biomech. Eng. 130:014502, 2008.

    Article  PubMed  Google Scholar 

  28. Laz, P. J., and M. Browne. A review of probabilistic analysis in orthopaedic biomechanics. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224:927–943, 2010.

    Article  CAS  Google Scholar 

  29. Lerner, Z. F., W. J. Board, and R. C. Browning. Effects of an obesity-specific marker set on estimated muscle and joint forces in walking. Med. Sci. Sport. Exerc. 46:1261–1267, 2014.

    Article  Google Scholar 

  30. Lieber, R. L., B. Ljung, and J. Friden. Intraoperative sacromere length measurements reveal differential design of human wrist extensor muscles. J. Exp. Biol. 200:19–25, 1997.

    CAS  PubMed  Google Scholar 

  31. Lloyd, D. G., and T. F. Besier. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36:765–776, 2003.

    Article  PubMed  Google Scholar 

  32. Melchers, R. E. Structural reliability analysis and prediction. New York, NY: Wiley, 2001.

    Google Scholar 

  33. Neptune, R. R., D. J. Clark, and S. A. Kautz. Modular control of human walking: a simulation study. J. Biomech. 42:1282–1287, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Nguyen, T. C., and K. J. Reynolds. The effect of variability in body segment parameters on joint moment using Monte Carlo simulations. Gait Posture 39:346–353, 2014.

    Article  PubMed  Google Scholar 

  35. Pavol, M. J., T. M. Owings, and M. D. Grabiner. Body segment inertial parameter estimation for the general population of older adults. J. Biomech. 35:707–712, 2002.

    Article  PubMed  Google Scholar 

  36. Perry, J. Gait analysis: normal and pathological function. Baltimore, MD: Stack, Inc., 1992.

    Google Scholar 

  37. Rao, G., D. Amarantini, E. Berton, and D. Favier. Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 39:1531–1536, 2006.

    Article  PubMed  Google Scholar 

  38. Reinbolt, J. A., R. T. Haftka, T. L. Chmielewski, and B. J. Fregly. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans. Biomed. Eng. 54:782–793, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Scovil, C. Y., and J. L. Ronsky. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39:2055–2063, 2006.

    Article  PubMed  Google Scholar 

  40. Shelburne, K. B., and M. G. Pandy. Determinants of cruciate-ligament loading during rehabilitation exercise. Clin. Biomech. 13:403–413, 1998.

    Article  Google Scholar 

  41. Silverman, A. K., and R. R. Neptune. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J. Biomech. 45:2271–2278, 2012.

    Article  PubMed  Google Scholar 

  42. Stagni, R., A. Leardini, A. Cappozzo, M. G. Benedetti, and A. Cappello. Effects of hip joint centre mislocation on gait analysis results. J. Biomech. 33:1479–1487, 2000.

    Article  CAS  PubMed  Google Scholar 

  43. Thelen, D. G., and F. C. Anderson. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39:1107–1115, 2006.

    Article  PubMed  Google Scholar 

  44. Valente, G., F. Taddei, and I. Jonkers. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis. J. Biomech. 46:2186–2193, 2013.

    Article  PubMed  Google Scholar 

  45. Van der Krogt, M. M., S. L. Delp, and M. H. Schwartz. How robust is human gait to muscle weakness? Gait Posture 36:113–119, 2012.

    Article  PubMed  Google Scholar 

  46. Vaughan, C. L., B. L. Davis, and J. C. O’Connor. Dynamics of Human Gait. Cape Town: Kiboho Publishers, 1992.

    Google Scholar 

  47. Ward, S. R., L. H. Smallwood, and R. L. Lieber. Scaling of Human Lower Extremity Muscle Architecture to Skeletal Dimensions. ISB XXth Congr. 29th Annu. Meet., 2005.

  48. Ward, S. R., C. M. Eng, L. H. Smallwood, and R. L. Lieber. Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467:1074–1082, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Dempster, W. E. Space Requirements of the Seated Operator. Ohio: WADC-TR-55-159, Wright Air Development, 1955.

  50. Wesseling, M., F. de Groote, and I. Jonkers. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. J. Biomech. 47:596–601, 2014.

    Article  PubMed  Google Scholar 

  51. Winby, C. R., D. G. Lloyd, and T. B. Kirk. Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J. Biomech. 41:1682–1688, 2008.

    Article  CAS  PubMed  Google Scholar 

  52. Zajac, F. E., R. R. Neptune, and S. A. Kautz. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katie Thompson for her assistance in figure preparation. This work was funded in part by the Donald W. Gustafson Fellowship in Orthopaedic Biomechanics awarded by the Gustafson Family Foundation.

Conflict of interest

There are no conflicts of interest to report in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley S. Davidson.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, C.A., Laz, P.J., Shelburne, K.B. et al. A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations. Ann Biomed Eng 43, 1098–1111 (2015). https://doi.org/10.1007/s10439-014-1181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1181-7

Keywords

Navigation