Skip to main content
Log in

Focal Association Between Wall Shear Stress and Clinical Coronary Artery Disease Progression

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Wall shear stress (WSS) has been investigated as a potential prospective marker to identify rapidly progressing coronary artery disease (CAD) and potential for lesions to acquire vulnerable characteristics. Previous investigations, however, are limited by a lack of understanding of the focal association between WSS and CAD progression (i.e., data are notably spatially averaged). Thus, the aim of this investigation was to examine the focal association between WSS and coronary atherosclerosis progression, and compare these results to those determined by spatial averaging. Five patients with CAD underwent baseline and 6-month follow-up angiographic and virtual histology-intravascular ultrasound imaging to quantify CAD progression. Patient-specific computational fluid dynamics models were constructed to compute baseline WSS values, which were either averaged around the entire artery circumference or examined in focal regions (sectors). Analysis of data within each sector (n = 3871) indicated that circumferentially averaged and sector WSS values were statistically different (p < 0.05) and exhibited poor agreement (concordance correlation coefficient = 0.69). Furthermore, differences were observed between the analysis techniques when examining the association of WSS and CAD progression. This investigation highlights the importance of examining spatially heterogeneous variables at a focal level to reduce the affect of data reduction and warrants implementation in a larger clinical study to determine the predictive power in prospectively identifying rapidly progressing and/or vulnerable coronary plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310, 1986.

    Article  CAS  PubMed  Google Scholar 

  2. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R Soc. Lond. B Biol. Sci. 177(46):109–159, 1971.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, C., D. Tempel, R. Van Haperen, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113(23):2744–2753, 2006.

    Article  PubMed  Google Scholar 

  4. Corban, M. T., P. Eshtehardi, J. Suo, et al. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis 232(2):271–276, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Eshtehardi, P., M. C. Mcdaniel, J. Suo, et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J. Am. Heart Assoc. 1(4):e002543, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Fox, B., and W. A. Seed. Location of early atheroma in the human coronary arteries. J. Biomech. Eng. 103(3):208–212, 1981.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman, M. H., C. B. Bargeron, O. J. Deters, et al. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68(1–2):27–33, 1987.

    Article  CAS  PubMed  Google Scholar 

  8. Friedman, M. H., G. M. Hutchins, C. B. Bargeron, et al. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39(3):425–436, 1981.

    Article  CAS  PubMed  Google Scholar 

  9. Go, A. S., D. Mozaffarian, V. L. Roger, et al. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292, 2014.

    Article  PubMed  Google Scholar 

  10. Hasan, M., D. A. Rubenstein, and W. Yin. Effects of cyclic motion on coronary blood flow. J. Biomech. Eng. 135(12):121002, 2013.

    Article  PubMed  Google Scholar 

  11. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118(1):74–82, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Kimura, B. J., R. J. Russo, V. Bhargava, et al. Atheroma morphology and distribution in proximal left anterior descending coronary artery: in vivo observations. J. Am. Coll. Cardiol. 27(4):825–831, 1996.

    Article  CAS  PubMed  Google Scholar 

  13. Koskinas, K. C., G. K. Sukhova, A. B. Baker, et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler. Thromb. Vasc. Biol. 33(7):1494–1504, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Krams, R., J. J. Wentzel, J. A. Oomen, et al. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17(10):2061–2065, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

  16. Ku, D. N., D. P. Giddens, C. K. Zarins, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    Article  CAS  PubMed  Google Scholar 

  17. Laban, M., J. A. Oomen, C. J. Slager, et al. Angus: a new approach to three-dimensional reconstruction of coronary vessels by combined use of angiography and intravascular ultrasound. In Proceedings of Computers in Cardiology, 1995, pp. 325–328.

  18. Lin, L. I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268, 1989.

    Article  CAS  PubMed  Google Scholar 

  19. Mcbridge, G. A proposal for strength-of-agreement critiera for lin’s concordance correlation coefficient. NIWA Client Report. HAM2005-062, 2005.

  20. Meier, B. Plaque sealing by coronary angioplasty. Heart 90(12):1395–1398, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mintz, G. S., S. E. Nissen, W. D. Anderson, et al. American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American college of cardiology task force on clinical expert consensus documents. J. Am. Coll. Cardiol. 37(5):1478–1492, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Nair, A., B. D. Kuban, E. M. Tuzcu, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206, 2002.

    Article  PubMed  Google Scholar 

  23. Peiffer, V., S. J. Sherwin, and P. D. Weinberg. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc. Res. 99(2):242–250, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Prosi, M., K. Perktold, Z. Ding, et al. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37(11):1767–1775, 2004.

    Article  PubMed  Google Scholar 

  25. R Development Core Team. R: a language and environment for statistical computing. http://www.R-project.org. Vienna, Austria, 2011.

  26. Samady, H., P. Eshtehardi, M. C. Mcdaniel, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788, 2011.

    Article  CAS  PubMed  Google Scholar 

  27. Stone, P. H., A. U. Coskun, S. Kinlay, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108(4):438–444, 2003.

    Article  PubMed  Google Scholar 

  28. Stone, P. H., A. U. Coskun, S. Kinlay, et al. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur. Heart J. 28(6):705–710, 2007.

    Article  PubMed  Google Scholar 

  29. Stone, G. W., A. Maehara, A. J. Lansky, et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364(3):226–235, 2011.

    Article  CAS  PubMed  Google Scholar 

  30. Stone, P. H., S. Saito, S. Takahashi, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the prediction study. Circulation 126(2):172–181, 2012.

    Article  PubMed  Google Scholar 

  31. Svindland, A. The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation. Atherosclerosis 48(2):139–145, 1983.

    Article  CAS  PubMed  Google Scholar 

  32. Timmins, L. H., J. S. Suever, P. Eshtehardi, et al. Framework to co-register longitudinal virtual histology-intravascular ultrasound data in the circumferential direction. IEEE Trans. Med. Imaging 32(11):1989–1996, 2013.

  33. Virmani, R., F. D. Kolodgie, A. P. Burke, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20(5):1262–1275, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Wahle, A., P. M. Prause, S. C. Dejong, et al. Geometrically correct 3-d reconstruction of intravascular ultrasound images by fusion with biplane angiography–methods and validation. IEEE Trans. Med. Imaging 18(8):686–699, 1999.

    Article  CAS  PubMed  Google Scholar 

  35. Wentzel, J. J., Y. S. Chatzizisis, F. J. Gijsen, et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc. Res. 96(2):234–243, 2012.

    Article  CAS  PubMed  Google Scholar 

  36. Wentzel, J. J., F. J. Gijsen, J. C. Schuurbiers, et al. Geometry guided data averaging enables the interpretation of shear stress related plaque development in human coronary arteries. J. Biomech. 38(7):1551–1555, 2005.

    Article  PubMed  Google Scholar 

  37. Wentzel, J. J., J. C. Schuurbiers, N. Gonzalo Lopez, et al. In vivo assessment of the relationship between shear stress and necrotic core in early and advanced coronary artery disease. EuroIntervention 9(8):989–995, 2013.

  38. Weydahl, E. S., and J. E. Moore. Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J. Biomech. 34(9):1189–1196, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Xie, Y., G. S. Mintz, J. Yang, et al. Clinical outcome of nonculprit plaque ruptures in patients with acute coronary syndrome in the prospect study. JACC Cardiovasc. Imaging 7(4):397–405, 2014.

  40. Zeng, D., Z. Ding, M. H. Friedman, et al. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31(4):420–429, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the American Heart Association Greater Southeast Affiliate—Postdoctoral Fellowships (L. H. T., D. S. M.), the Georgia Research Alliance (D. P. G.), the Wallace H. Coulter Translational Research Grant Program (H. S., D. P. G.), Toshiba America Medical Systems (H. S., D. P. G.), Pfizer Pharmaceuticals (H. S.), and Volcano Corp. (H. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas H. Timmins.

Additional information

Associate Editor Diego Gallo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmins, L.H., Molony, D.S., Eshtehardi, P. et al. Focal Association Between Wall Shear Stress and Clinical Coronary Artery Disease Progression. Ann Biomed Eng 43, 94–106 (2015). https://doi.org/10.1007/s10439-014-1155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1155-9

Keywords

Navigation