Skip to main content

Advertisement

Log in

Variations in Tendon Stiffness Due to Diets with Different Glycotoxins Affect Mechanical Properties in the Muscle-Tendon Unit

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Passive elastic behavior of tendon tissue from rats subjected to different dietary treatments was characterized. For that purpose, twenty-four weanling Wistar rats (41.02  ±  0.16 g) were randomly distributed into four groups. During 88 days each group was fed on different diets: control diet and diets containing advanced glycation end products (AGEs) from glucose–lysine model system, from bread crust and bread dough, respectively. After the trial animals were sacrificed and tendon samples were extracted and tested mechanically to fracture in a uniaxial tensile test machine. A transversely-hyperelastic model was formulated based on stress–strain relationships and its parameters were fit to the experimental data using the Levenberg–Marquardt optimization algorithm. Material parameters were incorporated in a finite element model to study different stress–strain distributions in a muscle-tendon unit. Results show higher strains and stresses in the muscle belly when properties of a stiffer tendon associated with a diet rich in AGEs are included in the model. A real increase in this mechanical response of the tissue could imply possible pain in joint mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adams, M. A. Biomechanics of back pain. Acupunct. Med. 22(4):178–188, 2004.

    Article  PubMed  Google Scholar 

  2. Alikhani, M., Z. Alikhani, C. Boyd, C. M. MacLellan, M. Raptis, R. Liu, N. Pischon, P. C. Trackman, L. Gerstenfeld, and D. T. Graves. Advanced glycation end products stimulate osteoblast apoptosis via the map kinase and cytosolic apoptotic pathways. Bone 40(2):345–353, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Bailey, A. J., R. G. Paul, and L. Knott. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 106(1-2):1–56, 1998

    Article  PubMed  CAS  Google Scholar 

  4. Baynes, J. W. The maillard hypothesis on aging: time to focus on dna. Ann. N. Y. Acad. Sci. 959:360–367, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Briefel, R. R., and C. L. Johnson. Secular trends in dietary intake in the united states. Annu. Rev. Nutr. 24:401–431, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46:223–234, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103(33):12285–12290, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Calvo, B., A. Ramírez, A. Alonso, J. Grasa, F. Soteras, R. Osta, M. J. Muñoz. Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation. J. Biomech. 43(2):318–325, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Delgado-Andrade, C., J. A. Rufián-Henares, R. Nieto, J. F. Aguilera, M. P. Navarro, I. Seiquer. Does the pelleting process affect the nutritive value of a pre-starter diet for suckling piglets? Ex vivo studies on mineral absorption. J. Agric. Food Chem. 90(5):898–905, 2010.

    CAS  Google Scholar 

  10. Delgado-Andrade, C., I. Seiquer, and M. P. Navarro. Comparative effects of glucose–lysine versus glucose–methionine maillard reaction products consumption: in vitro and in vivo calcium availability. Mol. Nutr. Food Res. 49(7):679–684, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Delgado-Andrade, C., I. Seiquer, M. P. Navarro, F. J. Morales. Maillard reaction indicators in diets usually consumed by adolescent population. Mol. Nutr. Food Res. 51(3):341–351, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. DeVita, P., and T. Hortobagyi. Age increases the skeletal versus muscular component of lower extremity stiffness during stepping down. J. Gerontol. A 55(12):B593–B600, 2000.

    Article  CAS  Google Scholar 

  13. Finocchietti, S., M. Nielsen, C. D. March, L. Arendt-Nielsen, T. Graven-Nielsen. Pressure-induced muscle pain and tissue biomechanics: a computational and experimental study. Eur. J. Pain 15:36–44, 2011.

    Article  PubMed  Google Scholar 

  14. Geissler, S., M. Hellwig, M. Zwarg, F. Markwardt, T. Henle, and M. Brandsch. Transport of the advanced glycation end products alanylpyrraline and pyrralylalanine by the human proton-coupled peptide transporter hpepT1. J. Agric. Food Chem. 58(4):2543–2547, 2010.

    Article  PubMed  CAS  Google Scholar 

  15. Grasa, J., A. Ramírez, R. Osta, M. J. Muñoz, F. Soteras, and B. Calvo. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomech. Model. Mechanobiol. 10(5):779–787, 2011.

    Article  PubMed  CAS  Google Scholar 

  16. Holzapfel, G. A. Nonlinear Solid Mechanics. New York: Wiley, 2000.

    Google Scholar 

  17. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289(5):H2048–H2058, 2005.

    Article  PubMed  CAS  Google Scholar 

  18. Isaksson, H., T. Harjula, A. Koistinen, J. Livarinen, K. Seppänen, J. P. A. Arokoski, P. A. Brama, J. S. Jurvelin, and H. J. Helminen. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties. J. Orthop. Res. 28(12):1626–1633, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Khalsa, P. S., and W. Ge. Encoding of tensile stress and strain during stretch by muscle mechano-nociceptors. Muscle Nerve 30(2):216–224, 2004.

    Article  PubMed  Google Scholar 

  20. MacIntosh, B. R., P. F. Gardiner, and A. J. McComas. Skeletal Muscle Form and Function, 2nd ed. Champaign, IL: Human Kinetics, 2006.

  21. Ogden, R. W. Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. lecture notes. CISM Course on Biomechanics of Soft Tissue, Udine, 2001.

  22. Olabisi, R. M., T. M. Best, C. Hurschler, R. Vanderby, and K. J. Noonan. The biomechanical effects of limb lengthening and botulinum toxin type a on rabbit tendon. J. Biomech. 43(16):3177–3182, 2010.

    Article  PubMed  Google Scholar 

  23. Reddy, G. K. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon. Exp. Diabesity Res. 5(2):143–153, 2004.

    Article  PubMed  CAS  Google Scholar 

  24. Reeves, P. G., F. H. Nielsen, and G. C. Fahey. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123(11):1939–1951, 1993.

    PubMed  CAS  Google Scholar 

  25. Saito, M., and K. Marumo. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 21(2):195–214, 2010.

    Article  PubMed  CAS  Google Scholar 

  26. Saudek, D. M., and J. Kay. Advanced glycation endproducts and osteoarthritis. Curr. Rheumatol. Rep. 5(1):33–40, 2003.

    Article  PubMed  Google Scholar 

  27. Shinabarger, N. I. Limited joint mobility in adults with diabetes mellitus. Phys. Ther. 67(2):215–218, 1987.

    PubMed  CAS  Google Scholar 

  28. Spencer, A. J. M. Continuum Physics. Theory of Invariants. New York: Academic Press, 1954

    Google Scholar 

  29. Tessier, F. J., C. Niquet, L. Rhazi, K. Hedhili, M. P. Navarro, I. Seiquer, and C. Delgado-Andrade. The Maillard Reaction. Interface Between Aging, Nutrition and Metabolism, chap. Ne-Carboxymethyllysine: Its Origin in Selected Foods and Its Urinary and Faecal Excretion in Healthy Humans. Cambridge: Royal Society, 2010, pp. 144–150.

  30. Verzijl, N., J. DeGroot, Z. C. Ben, O. Brau-Benjamin, A. Maroudas, R. A. Bank, J. Mizrahi, C. G. Schalkwijk, S. R. Thorpe, J. W. Baynes, J. W. J. Bijlsma, F. P. J. G. Lafeber, and J. M. TeKoppele. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 46(1):114–123, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Woo S. L.-Y and L. V. Tkach. Sports-Induced Inflammation: Clinical and Basic Concepts, Chapter: The cellular and matrix response of ligaments and tendons to mechanical injury. Park Ridge, Aaos Instr Cours Lec, 1990, pp. 189–213.

Download references

Acknowledgments

The authors gratefully acknowledge research support from the Spanish Ministry of Science and Technology through the research project DPI2011-27939-C02-01 as well as the financial support of the Junta de Andalucia. We also thank the Tissue Characterization Platform of CIBER-BBN for their technical support during development of the experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Grasa.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasa, J., Calvo, B., Delgado-Andrade, C. et al. Variations in Tendon Stiffness Due to Diets with Different Glycotoxins Affect Mechanical Properties in the Muscle-Tendon Unit. Ann Biomed Eng 41, 488–496 (2013). https://doi.org/10.1007/s10439-012-0674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0674-5

Keywords

Navigation