Skip to main content

Advertisement

Log in

Toward Mechanical Systems Biology in Bone

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cyclic mechanical loading is perhaps the most important physiological factor regulating bone mass and shape in a way which balances optimal strength with minimal weight. This bone adaptation process spans multiple length and time scales. Forces resulting from physiological exercise at the organ scale are sensed at the cellular scale by osteocytes, which reside inside the bone matrix. Via biochemical pathways, osteocytes orchestrate the local remodeling action of osteoblasts (bone formation) and osteoclasts (bone resorption). Together these local adaptive remodeling activities sum up to strengthen bone globally at the organ scale. To resolve the underlying mechanisms it is required to identify and quantify both cause and effect across the different scales. Progress has been made at the different scales experimentally. Computational models of bone adaptation have been developed to piece together various experimental observations at the different scales into coherent and plausible mechanisms. However additional quantitative experimental validation is still required to build upon the insights which have already been achieved. In this review we discuss emerging as well as state of the art experimental and computational techniques and how they might be used in a mechanical systems biology approach to further our understanding of the mechanisms governing load induced bone adaptation, i.e., ways are outlined in which experimental and computational approaches could be coupled, in a quantitative manner to create more reliable multiscale models of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Adachi, T., Y. Kameo, and M. Hojo. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Philos. Trans. R. Soc. A 368:2669–2682, 2010.

    Article  Google Scholar 

  2. Adachi, T., Y. Tomita, H. Sakaue, and M. Tanaka. Simulation of trabecular surface remodeling based on local stress nonuniformity. Jpn. Soc. Mech. Eng. 40:782–792, 1997.

    Google Scholar 

  3. Adachi, T., K. Tsubota, Y. Tomita, and S. J. Hollister. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J. Biomech. Eng. 123:403–409, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Albright, J. The Scientific Basis of Orthopaedics. New York: Appleton-Century Crofts, 1987.

    Google Scholar 

  5. Andriacchi, T. P., S. Koo, and S. F. Scanlan. Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J. Bone Joint Surg. Am. 91(Suppl 1):95–101, 2009.

    Article  PubMed  Google Scholar 

  6. Ascenzi, M. G., J. Gill, and A. Lomovtsev. Orientation of collagen at the osteocyte lacunae in human secondary osteons. J. Biomech. 41:3426–3435, 2008.

    Article  PubMed  Google Scholar 

  7. Atkins, G. J., P. S. Rowe, H. P. Lim, K. J. Welldon, R. Ormsby, A. R. Wijenayaka, L. Zelenchuk, A. Evdokiou, and D. M. Findlay. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J. Bone Miner. Res. 26:1425–1436, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Be’ery-Lipperman, M., and A. Gefen. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling. Comput. Methods Biomech. 9:35–44, 2006.

    Article  Google Scholar 

  9. Bonewald, L. F. Osteocytes: a proposed multifunctional bone cell. J. Musculoskelet. Neuronal Interact. 2:239–241, 2002.

    PubMed  CAS  Google Scholar 

  10. Bonewald, L. Osteocytes as multifunctional cells. J. Musculoskelet. Neuronal Interact. 6:331–333, 2006.

    PubMed  CAS  Google Scholar 

  11. Bonewald, L. F., and M. L. Johnson. Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615, 2008.

    Article  PubMed  CAS  Google Scholar 

  12. Bonivtch, A. R., L. F. Bonewald, and D. P. Nicolella. Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. J. Biomech. 40:2199–2206, 2007.

    Article  PubMed  Google Scholar 

  13. Bontoux, N., L. Dauphinot, T. Vitalis, V. Studer, Y. Chen, J. Rossier, and M. C. Potier. Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip 8:443–450, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Buenzli, P. R., J. Jeon, P. Pivonka, D. W. Smith, and P. T. Cummings. Investigation of bone resorption within a cortical basic multicellular unit using a lattice-based computational model. Bone 50:378–389, 2012.

    Article  PubMed  Google Scholar 

  15. CellML. http://www.cellml.org/. Accessed 15 March 2012.

  16. Chambers, T. J., S. Fox, C. J. Jagger, J. M. Lean, and J. W. Chow. The role of prostaglandins and nitric oxide in the response of bone to mechanical forces. Osteoarthritis Cartilage 7:422–423, 1999.

    Article  PubMed  CAS  Google Scholar 

  17. Chen, N. X., K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Y. Qiu, and R. L. Duncan. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278:C989–C997, 2000.

    PubMed  CAS  Google Scholar 

  18. Chow, J. W. Role of nitric oxide and prostaglandins in the bone formation response to mechanical loading. Exerc. Sport Sci. Rev. 28:185–188, 2000.

    PubMed  CAS  Google Scholar 

  19. Christie, G. R., P. M. Nielsen, S. A. Blackett, C. P. Bradley, and P. J. Hunter. FieldML: concepts and implementation. Philos. Trans. A Math. Phys. Eng. Sci. 367:1869–1884, 2009.

    Article  Google Scholar 

  20. Coelho, P. G., P. R. Fernandes, H. C. Rodrigues, J. B. Cardoso, and J. M. Guedes. Numerical modeling of bone tissue adaptation—a hierarchical approach for bone apparent density and trabecular structure. J. Biomech. 42:830–837, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. De Souza, R. L., M. Matsuura, F. Eckstein, S. C. F. Rawlinson, L. E. Lanyon, and A. A. Pitsillides. Non-invasive axial loading of mouse tibiae increases cortical bone fori-nation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37:810–818, 2005.

    Article  PubMed  Google Scholar 

  22. Emmert-Buck, M. R., R. F. Bonner, P. D. Smith, R. F. Chuaqui, Z. P. Zhuang, S. R. Goldstein, R. A. Weiss, and L. A. Liotta. Laser capture microdissection. Science 274:998–1001, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez, J. W., M. Akbarshahi, K. M. Crossley, K. B. Shelburne, and M. G. Pandy. Model predictions of increased knee joint loading in regions of thinner articular cartilage after patellar tendon adhesion. J. Orthop. Res. 29:1168–1177, 2011.

    Article  PubMed  Google Scholar 

  24. FieldML. http://www.fieldml.org/. Accessed 15 March 2012.

  25. Fritton, J. C., E. R. Myers, T. M. Wright, and M. C. H. van der Meulen. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone 36:1030–1038, 2005.

    Article  PubMed  CAS  Google Scholar 

  26. Frost, H. M. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 2:73–85, 1987.

    PubMed  CAS  Google Scholar 

  27. Fyhrie, D. P., and D. R. Carter. A unifying principle relating stress to trabecular bone morphology. J. Orthop. Res. 4:304–317, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Fyhrie, D. P., and D. R. Carter. Prediction of cancellous bone apparent density with 3-D stress analysis. In: Transactions 32nd Annual Orthopedic Research Society, p. 133, 1986.

  29. Galea, G. L., A. Sunters, L. B. Meakin, G. Zaman, T. Sugiyama, L. E. Lanyon, and J. S. Price. Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett. 585:2450–2454, 2011.

    Article  PubMed  CAS  Google Scholar 

  30. Gerhard, F. A., D. J. Webster, G. H. van Lenthe, and R. Muller. In silico biology of bone modelling and remodelling: adaptation. Philos. Trans. A Math. Phys Eng. Sci. 367:2011–2030, 2009.

    Article  Google Scholar 

  31. Gross, T. S., J. L. Edwards, K. J. McLeod, and C. T. Rubin. Strain gradients correlate with sites of periosteal bone formation. J. Bone Miner. Res. 12:982–988, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Gross, T. S., S. Srinivasan, C. C. Liu, T. L. Clemens, and S. D. Bain. Noninvasive loading of the murine tibia: an in vivo model for the study of mechanotransduction. J. Bone Miner. Res. 17:493–501, 2002.

    Article  PubMed  Google Scholar 

  33. Heino, T. J., T. A. Hentunen, and H. K. Vaananen. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp. Cell Res. 294:458–468, 2004.

    Article  PubMed  CAS  Google Scholar 

  34. Henriksen, K., M. Karsdal, J. M. Delaisse, and M. T. Engsig. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. J. Biol. Chem. 278:48745–48753, 2003.

    Article  PubMed  CAS  Google Scholar 

  35. Huiskes, R., R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31:969–976, 1998.

    Article  PubMed  CAS  Google Scholar 

  37. Jacquet, R., J. Hillyer, and W. J. Landis. Analysis of connective tissues by laser capture inicrodissection and reverse transcriptase-polymerase chain reaction. Anal. Biochem. 337:22–34, 2005.

    Article  PubMed  CAS  Google Scholar 

  38. Kamioka, H., T. Honjo, and T. A. Takano-Yamamoto. Three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Kesavan, C., S. Mohan, S. Oberholtzer, J. E. Wergedal, and D. J. Baylink. Mechanical loading-induced gene expression and BMD changes are different in two inbred mouse strains. J. Appl. Physiol. 99:1951–1957, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Keyak, J. H., J. M. Meagher, H. B. Skinner, and C. D. Mote. Automated three-dimensional finite element modelling of bone: a new method. J. Biomed. Eng. 12:389–397, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Klein-Nulend, J., R. G. Bacabac, and M. G. Mullender. Mechanobiology of bone tissue. Pathol. Biol. 53:576–580, 2005.

    Article  PubMed  CAS  Google Scholar 

  42. Klein-Nulend, J., C. M. Semeins, N. E. Ajubi, P. J. Nijweide, and E. H. Burger. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217:640–648, 1995.

    Article  PubMed  CAS  Google Scholar 

  43. Klein-Nulend, J., A. Vanderplas, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, and E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9:441–445, 1995.

    PubMed  CAS  Google Scholar 

  44. Knothe Tate, M. L. Top down and bottom up engineering of bone. J. Biomech. 44:304–312, 2011.

    Article  PubMed  Google Scholar 

  45. Lambers, F. M., F. A. Schulte, G. Kuhn, D. J. Webster, and R. Mueller. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Bone 49:1340–1350, 2011.

    Article  PubMed  Google Scholar 

  46. Lanyon, L. E. Osteocytes, strain detection, bone modeling and remodeling. Calcif. Tissue Int. 53(Suppl 1):S102–S106; discussion S106–S107, 1993.

    Google Scholar 

  47. Lemaire, V., F. L. Tobin, L. D. Greller, C. R. Cho, and L. J. Suva. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J. Theor. Biol. 229:293–309, 2004.

    Article  PubMed  CAS  Google Scholar 

  48. Maldonado, S., S. Borchers, R. Findeisen, and F. Allgower. Mathematical modeling and analysis of force induced bone growth. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3154–3157, 2006.

    PubMed  Google Scholar 

  49. Marcus, J. S., W. F. Anderson, and S. R. Quake. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78:3084–3089, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Moustafa, A., T. Sugiyama, J. Prasad, G. Zaman, T. S. Gross, L. E. Lanyon, and J. S. Price. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos. Int. 23:1225–1234, 2012.

    Article  PubMed  CAS  Google Scholar 

  51. Mullender, M., A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger, and J. Klein-Nulend. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput. 42:14–21, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Nakashima, T., M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-hora, J. Q. Feng, L. F. Bonewald, T. Kodama, A. Wutz, E. F. Wagner, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17:1231–1234, 2011.

    Article  PubMed  CAS  Google Scholar 

  53. Nickerson, D., and P. Hunter. Using CellML in computational models of multiscale physiology. Proc. Ann. Int. IEEE EMBS 6:6096–6099, 2005.

    Google Scholar 

  54. Nicolella, D. P., D. E. Moravits, A. M. Gale, L. F. Bonewald, and J. Lankford. Osteocyte lacunae tissue strain in cortical bone. J. Biomech. 39(1735–43):57, 2006.

    Google Scholar 

  55. Norman, J., J. G. Shapter, K. Short, L. J. Smith, and N. L. Fazzalari. Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. J. Biomed. Mater. Res. A 87:196–202, 2008.

    PubMed  Google Scholar 

  56. Parfitt, A. M. Osteonal and hemi-osteonal remodeling—the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55:273–286, 1994.

    Article  PubMed  CAS  Google Scholar 

  57. Pitsillides, A. A., S. C. F. Rawlinson, R. F. L. Suswillo, S. Bourrin, G. Zaman, and L. E. Lanyon. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 9:1614–1622, 1995.

    PubMed  CAS  Google Scholar 

  58. Pivonka, P., J. Zimak, D. W. Smith, B. S. Gardiner, C. R. Dunstan, N. A. Sims, T. J. Martin, and G. R. Mundy. Model structure and control of bone remodeling: a theoretical study. Bone 43:249–263, 2008.

    Article  PubMed  CAS  Google Scholar 

  59. Poole, K. E. S., R. L. van Bezooijen, N. Loveridge, H. Hamersma, S. E. Papapoulos, C. W. Lowik, and J. Reeve. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19:1842, 2005.

    PubMed  CAS  Google Scholar 

  60. Prendergast, P. J., and D. Taylor. Prediction of bone adaptation using damage accumulation. J. Biomech. 27:1067–1076, 1994.

    Article  PubMed  CAS  Google Scholar 

  61. Robling, A. G., P. J. Niziolek, L. A. Baldridge, K. W. Condon, M. R. Allen, I. Alam, S. M. Mantila, J. Gluhak-Heinrich, T. M. Bellido, S. E. Harris, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283:5866–5875, 2008.

    Article  PubMed  CAS  Google Scholar 

  62. Robling, A. G., and C. H. Turner. Mechanotransduction in bone: genetic effects on mechanosensitivity in mice. Bone 31:562–569, 2002.

    Article  PubMed  CAS  Google Scholar 

  63. Rubin, M. A., and I. Jasiuk. The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36:653–664, 2005.

    Article  PubMed  Google Scholar 

  64. Ruimerman, R., P. Hilbers, B. van Rietbergen, and R. Huiskes. A theoretical framework for strain-related trabecular bone maintenance and adaptation. J. Biomech. 38:931–941, 2005.

    Article  PubMed  CAS  Google Scholar 

  65. Ryser, M. D., N. Nigam, and S. V. Komarova. Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J. Bone Miner. Res. 24:860–870, 2009.

    Article  PubMed  Google Scholar 

  66. Schulte, F. A., F. M. Lambers, G. Kuhn, and R. Mueller. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone 48:433–442, 2011.

    Article  PubMed  Google Scholar 

  67. Schulte, F. A., F. M. Lambers, D. J. Webster, G. Kuhn, and R. Mueller. Strain energy density predicts sites of local trabecular bone formation and resorption. In: Abstracts 17th Congress of the European Society of Biomechanics (ESB), Edinburgh, UK, 5–7 July 2010, p. 697.

  68. Schutze, K., and G. Lahr. Identification of expressed genes by laser-mediated manipulation of single cells. Nat. Biotechnol. 16:737–742, 1998.

    Article  PubMed  CAS  Google Scholar 

  69. Shim, V. B., P. J. Hunter, P. Pivonka, and J. W. Fernandez. A multiscale framework based on the physiome markup languages for exploring the initiation of osteoarthritis at the bone-cartilage interface. IEEE Trans. Biomed. Eng. 58:3532–3536, 2011.

    Article  PubMed  Google Scholar 

  70. Tang, F., C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, X. Wang, J. Bodeau, B. B. Tuch, A. Siddiqui, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:377–382, 2009.

    Article  PubMed  CAS  Google Scholar 

  71. Tang, F. C., P. Hajkova, S. C. Barton, K. Q. Lao, and M. A. Surani. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 34:e9, 2006.

    Article  PubMed  Google Scholar 

  72. Turner, C. H., M. R. Forwood, and M. W. Otter. Mechanotransduction in bone—do bone-cells act as sensors of fluid flow. FASEB J. 8:875–878, 1994.

    PubMed  CAS  Google Scholar 

  73. van Bezooijen, R. L., B. A. J. Roelen, A. Visser, L. van der Wee-Pals, E. de Wilt, M. Karperien, H. Hamersma, S. E. Papapoulos, P. ten Dijke, and C. Lowik. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199:805–814, 2004.

    Article  PubMed  Google Scholar 

  74. van der Meulen, M. C. H., T. G. Morgan, X. Yang, T. H. Baldini, E. R. Myers, T. M. Wright, and M. P. G. Bostrom. Cancellous bone adaptation to in vivo loading in a rabbit model. Bone 38:871–877, 2006.

    Article  PubMed  Google Scholar 

  75. Warden, S. J., and C. H. Turner. Mechanotransduction in cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone 34:261–270, 2004.

    Article  PubMed  CAS  Google Scholar 

  76. Wasserman, E., D. Webster, M. Attar-Namdar, R. Mueller, and I. Bab. Method for differential isolation of RNA from mouse caudal trabecular osteoblasts and osteocytes. J. Biomech. 41:S131–S131, 2008.

    Article  Google Scholar 

  77. Webster, D. J., P. L. Morley, G. H. van Lenthe, and R. Mueller. A novel in vivo mouse model for mechanically stimulated bone adaptation—a combined experimental and computational validation study. Comput. Methods Biomech. Biomed. Eng. 11:435–441, 2008.

    Article  Google Scholar 

  78. Webster, D., and R. Muller. In silico models of bone remodeling from macro to nano-from organ to cell. Wires Syst. Biol. Med. 3:241–251, 2011.

    Article  CAS  Google Scholar 

  79. White, A. K., M. VanInsberghe, O. I. Petriv, M. Hamidi, D. Sikorski, M. A. Marra, J. Piret, S. Aparicio, and C. L. Hansen. High-throughput microfluidic single-cell RT-qPCR. Proc. Natl Acad. Sci. USA 108:13999–14004, 2011.

    Article  PubMed  CAS  Google Scholar 

  80. Winkler, D. G., M. K. Sutherland, J. C. Geoghegan, C. P. Yu, T. Hayes, J. E. Skonier, D. Shpektor, M. Jonas, B. R. Kovacevich, K. Staehling-Hampton, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22:6267–6276, 2003.

    Article  PubMed  CAS  Google Scholar 

  81. Wolff, J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald, 1892.

    Google Scholar 

  82. Xing, W. R., D. Baylink, C. Kesavan, Y. Hu, S. Kapoor, R. B. Chadwick, and S. Mohan. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice. J. Cell. Biochem. 96:1049–1060, 2005.

    Article  PubMed  CAS  Google Scholar 

  83. Xiong, J., M. Onal, R. L. Jilka, R. S. Weinstein, S. C. Manolagas, and C. A. O’Brien. Matrix-embedded cells control osteoclast formation. Nat. Med. 17:U1235–U1262, 2011.

    Article  Google Scholar 

  84. Yang, X. B., R. S. Tare, K. A. Partridge, H. I. Roach, N. M. Clarke, S. M. Howdle, K. M. Shakesheff, and R. O. Oreffo. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering. J. Bone Miner. Res. 18:47–57, 2003.

    Article  PubMed  CAS  Google Scholar 

  85. Zaman, G., H. L. Jessop, M. Muzylak, R. L. De Souza, A. A. Pitsillides, J. S. Price, and L. L. Lanyon. Osteocytes use estrogen receptor alpha to respond to strain but their ER alpha content is regulated by estrogen. J. Bone Miner. Res. 21:1297–1306, 2006.

    Article  PubMed  CAS  Google Scholar 

  86. Zhao, S., Y. Kato, Y. Zhang, S. Harris, S. S. Ahuja, and L. F. Bonewald. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J. Bone Miner. Res. 17:2068–2079, 2002.

    Article  PubMed  CAS  Google Scholar 

  87. Zhong, J. F., Y. Chen, J. S. Marcus, A. Scherer, S. R. Quake, C. R. Taylor, and L. P. Weiner. A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8:68–74, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Friederike Schulte and Reto Fortunati for the provided images. Furthermore the authors gratefully acknowledge the funding from the SystemsX.ch/Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Webster.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trüssel, A., Müller, R. & Webster, D. Toward Mechanical Systems Biology in Bone. Ann Biomed Eng 40, 2475–2487 (2012). https://doi.org/10.1007/s10439-012-0594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0594-4

Keywords

Navigation