Skip to main content
Log in

Aging Impact on Thoracic Aorta 3D Morphometry in Intermediate-Risk Subjects: Looking Beyond Coronary Arteries with Non-Contrast Cardiac CT

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An increasing number of intermediate risk asymptomatic subjects benefit from measures of atherosclerosis burden like coronary artery calcification studies with non-contrast heart computed tomography (CT). However, additional information can be derived from these studies, looking beyond the coronary arteries and without exposing the patients to further radiation. We report a semi-automatic method that objectively assesses ascending, arch and descending aorta dimension and shape from non-contrast CT datasets to investigate the effect of aging on thoracic aorta geometry. First, the segmentation process identifies the vessel centerline coordinates following a toroidal path for the curvilinear portion and axial planes for descending aorta. Then, reconstructing oblique planes orthogonal to the centerline direction, it iteratively fits circles inside the vessel cross-section. Finally, regional thoracic aorta dimensions (diameter, volume and length) and shape (vessel curvature and tortuosity) are calculated. A population of 200 normotensive men was recruited. Length, mean diameter and volume differed by 1.2 cm, 0.13 cm and 21 cm3 per decade of life, respectively. Aortic shape uncoiled with aging, reducing its tortuosity and increasing its radius of curvature. The arch was the most affected segment. In conclusion, non-contrast cardiac CT imaging can be successfully employed to assess thoracic aorta 3D morphometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Agmon, Y., B. K. Khandheria, I. Meissner, G. L. Schwartz, J. D. Sicks, A. J. Fought, W. M. O’Fallon, D. O. Wiebers, and A. J. Tajik. Is aortic dilatation an atherosclerosis-related process? Clinical, laboratory, and transesophageal echocardiographic correlates of thoracic aortic dimensions in the population with implications for thoracic aortic aneurysm formation. J. Am. Coll. Cardiol. 42(6):1076–1083, 2003.

    Article  PubMed  Google Scholar 

  2. Behrens, T., K. Rohr, and H. S. Stiehl. Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking. IEEE Trans. Syst. Man Cybern. B Cybern. 33(4):554–561, 2003.

    Article  PubMed  CAS  Google Scholar 

  3. Budoff, M. J., and K. M. Gul. Expert review on coronary calcium. Vasc. Health Risk Manag. 4(2):315–324, 2008.

    PubMed  Google Scholar 

  4. Chironi, G., L. Orobinskaia, J. L. Megnien, M. E. Sirieix, S. Clement-Guinaudeau, M. Bensalah, A. Azarine, E. Mousseaux, and A. Simon. Early thoracic aorta enlargement in asymptomatic individuals at risk for cardiovascular disease: determinant factors and clinical implication. J. Hypertens. 28(10):2134–2138, 2010.

    PubMed  CAS  Google Scholar 

  5. Choi, G., C. Cheng, N. Wilson, and C. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37(1):14–33, 2009.

    Article  PubMed  Google Scholar 

  6. Chyu, K. Y., and P. K. Shah. Emerging therapies for atherosclerosis prevention and management. Cardiol. Clin. 29(1):123–135, 2011.

    Article  PubMed  Google Scholar 

  7. de Bruijne, M., B. van Ginneken, M. A. Viergever, and W. J. Niessen. Adapting active shape models for 3D segmentation of tubular structures in medical images. Inf. Process. Med. Imaging 18:136–147, 2003.

    Article  PubMed  Google Scholar 

  8. Dotter, C. T., D. J. Roberts, and I. Steinberg. Aortic length: angiocardiographic measurements. Circulation 2(6):915–920, 1950.

    PubMed  CAS  Google Scholar 

  9. Elefteriades, J. A., and E. A. Farkas. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55(9):841–857, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Frangi, A. F., W. J. Niessen, R. M. Hoogeveen, T. van Walsum, and M. A. Viergever. Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10):946–956, 1999.

    Article  PubMed  CAS  Google Scholar 

  11. Funka-Lea, G., Y. Boykov, C. Florin, M. P. Jolly, R. Moreau-Gobard, R. Ramaraj, and D. Rinck. Automatic heart isolation for CT coronary visualization using graph-cuts. In: Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, 2006, pp. 614–617.

  12. Gentile, B. J., D. R. Gross, C. J. Chuong, and N. H. Hwang. Segmental volume distensibility of the canine thoracic aorta in vivo. Cardiovasc. Res. 22(6):385–389, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Giulini, S. M., and S. Bonardelli. Post-traumatic lesions of the aortic isthmus. Ann. Ital. Chir. 80(2):89–100, 2009.

    PubMed  Google Scholar 

  14. Greenland, P., J. S. Alpert, G. A. Beller, E. J. Benjamin, M. J. Budoff, Z. A. Fayad, E. Foster, M. A. Hlatky, J. M. Hodgson, F. G. Kushner, et al. ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 56(25):e50–e103, 2010.

    Article  PubMed  Google Scholar 

  15. Greenland, P., S. C. Smith, Jr., and S. M. Grundy. Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation 104(15):1863–1867, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Kannel, W. B., R. B. D’Agostino, L. Sullivan, and P. W. Wilson. Concept and usefulness of cardiovascular risk profiles. Am. Heart J. 148(1):16–26, 2004.

    Article  PubMed  Google Scholar 

  17. Kovács, T. Automatic segmentation of the vessel lumen from 3D CTA images of aortic dissection. In: Selected Readings in Vision and Graphics, edited by L. Van Gool, G. Székely, M. Gross, and B. Schiele. Konstanz: Hartung-Gorre Verlag, 2010.

    Google Scholar 

  18. Kurkure, U., O. C. Avila-Montes, and I. A. Kakadiaris. Automated segmentation of thoracic aorta in non-contrast CT images. In: Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, 2008, pp. 29–32.

  19. Mao, S. S., N. Ahmadi, B. Shah, D. Beckmann, A. Chen, L. Ngo, F. R. Flores, Y. L. Gao, and M. J. Budoff. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad. Radiol. 15(7):827–834, 2008.

    Article  PubMed  Google Scholar 

  20. Muntendam, P., C. McCall, J. Sanz, E. Falk, and V. Fuster. The BioImage Study: novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease—study design and objectives. Am. Heart J. 160(1):49–57e41, 2010.

    Article  PubMed  Google Scholar 

  21. O’Rourke, M., A. Farnsworth, and J. O’Rourke. Aortic dimensions and stiffness in normal adults. JACC Cardiovasc. Imaging 1(6):749–751, 2008.

    Article  PubMed  Google Scholar 

  22. Patel, D. J., A. J. Mallos, and D. L. Fry. Aortic mechanics in the living dog. J. Appl. Physiol. 16:293–299, 1961.

    PubMed  CAS  Google Scholar 

  23. Roger, V. L., A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209, 2011.

    Article  PubMed  Google Scholar 

  24. Rueckert, D., P. Burger, S. M. Forbat, R. D. Mohiaddin, and G. Z. Yang. Automatic tracking of the aorta in cardiovascular MR images using deformable models. IEEE Trans. Med. Imaging 16(5):581–590, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Rumberger, J. A. Using noncontrast cardiac CT and coronary artery calcification measurements for cardiovascular risk assessment and management in asymptomatic adults. Vasc. Health Risk Manag. 6:579–591, 2010.

    Article  PubMed  Google Scholar 

  26. Schwartz, E., R. Gottardi, J. Holfeld, C. Loewe, M. Czerny, and G. Langs. Evaluating deformation patterns of the thoracic aorta in gated CTA sequences. In: Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, 2010, pp. 21–24.

  27. Shah, P. K. Screening asymptomatic subjects for subclinical atherosclerosis: can we, does it matter, and should we? J. Am. Coll. Cardiol. 56(2):98–105, 2010.

    Article  PubMed  Google Scholar 

  28. Sugawara, J., K. Hayashi, T. Yokoi, and H. Tanaka. Age-associated elongation of the ascending aorta in adults. J. Am. Coll. Cardiol. Imaging 1(6):739–748, 2008.

    Google Scholar 

  29. Thomas, J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Steinman, J. D. Spence, and B. K. Rutt. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36(11):2450–2456, 2005.

    Article  PubMed  Google Scholar 

  30. Vasan, R. S., M. G. Larson, and D. Levy. Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation 91(3):734–740, 1995.

    PubMed  CAS  Google Scholar 

  31. Wolak, A., H. Gransar, L. E. J. Thomson, J. D. Friedman, R. Hachamovitch, A. Gutstein, L. J. Shaw, D. Polk, N. D. Wong, R. Saouaf, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc. Imaging 1(2):200–209, 2008.

    Article  PubMed  Google Scholar 

  32. Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101(5):1412–1418, 2006.

    Article  PubMed  CAS  Google Scholar 

  33. Worz, S., H. von Tengg-Kobligk, V. Henninger, F. Rengier, H. Schumacher, D. Bockler, H. U. Kauczor, and K. Rohr. 3-D quantification of the aortic arch morphology in 3-D CTA data for endovascular aortic repair. IEEE Trans. Biomed. Eng. 57(10):2359–2368, 2010.

    Article  PubMed  Google Scholar 

  34. Zhao, F., H. Zhang, A. Wahle, M. T. Thomas, A. H. Stolpen, T. D. Scholz, and M. Sonka. Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med. Image Anal. 13(3):483–493, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project PIP number 112-200901-00734 (CONICET) and the Houssay post-doctoral program (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Craiem.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Appendix

Appendix

The curvilinear portion of the thoracic aorta was analyzed reconstructing oblique planes that turned around the mid-point between centerline coordinates C A and C D as shown in Fig. 1b. Starting from an axial plane P 0, that contain C A and C D, the algorithm makes a fixed translation-rotation and a subsequent dynamic rotation pivoting around the center of the aortic arch.

The plane P 0 was defined as:

$$ P_{0} = \lambda \cdot \hat{x} + \varepsilon \cdot \hat{y} + z_{{C_{\text{A}} ,C_{\text{D}} }} \cdot \hat{z} $$

where \( \hat{x}, \hat{y} \) and \( \hat{z} \) are the unit vectors of the 3D euclidean space along the coronal, sagital and axial directions of the CT volume, \( z_{{C_{\text{A}} ,C_{\text{D}} }} \) is the z-coordinate of the slice containing C A and C D and parameters λ, ɛ are such that:

$$ \lambda ,\varepsilon \in N^{0} /\{ \lambda < 512 \wedge \varepsilon < 512\} $$

P 0 was first translated and rotated with the following transformation

$$ rtP_{0} = R_{{\alpha ,\hat{z}}} \left( {P_{0} - \left\langle {P_{0} } \right\rangle } \right) $$

where \( \left\langle {P_{0} } \right\rangle \) is the center-point of the plane P 0 and \( R_{{\alpha ,\hat{z}}} \) is the rotation matrix

$$ R_{{\alpha ,\hat{z}}} = \left[ {\begin{array}{*{20}c} {\cos \alpha } & { - \sin \alpha } & 0 \\ {\sin \alpha } & {\cos \alpha } & 0 \\ 0 & 0 & 1 \\ \end{array} } \right] $$

that aligns P 0 with the vector connecting C A and C D. Accordingly, angle α was calculated as:

$$ \alpha = a\cos \left( {\frac{{\hat{x} \cdot (C_{\text{A}} - C_{\text{D}} )}}{{\left\| {C_{\text{A}} - C_{\text{D}} } \right\|}}} \right) $$

Finally, the resulting plane was sequentially rotated in 2° steps, using the transformation

$$ P_{i} = R_{{\theta_{i} ,u}} \cdot rtP_{0} $$

where \( R_{{\theta_{i},u}} \) is the rotation matrix:

$$ R_{\theta ,u} = \left[ {\begin{array}{*{20}c} {\cos \theta + u_{x}^{2} (1 - \cos \theta )} & {u_{x} u_{y} (1 - \cos \theta ) - u_{z} \sin \theta } & {u_{x} u_{z} (1 - \cos \theta ) + u_{y} \sin \theta } \\ {u_{y} u_{x} (1 - \cos \theta ) + u_{z} \sin \theta } & {\cos \theta + u_{y}^{2} (1 - \cos \theta )} & {u_{y} u_{z} (1 - \cos \theta ) - u_{x} \sin \theta } \\ {u_{z} u_{x} (1 - \cos \theta ) - u_{y} \sin \theta } & {u_{z} u_{y} (1 - \cos \theta ) + u_{x} \sin \theta } & {\cos \theta + u_{z}^{2} (1 - \cos \theta )} \\ \end{array} } \right] $$

which performs a rotation of θ degrees around the axis u, orthogonal to the segment \( \overline{{C_{\text{A}} - C_{\text{D}} }} \) and the unit vector \( \hat{z} \), calculated from the following a vector product:

$$ u = \frac{{(C_{\text{A}} - C_{\text{D}} ) \otimes \hat{z}}}{{\left\| {C_{\text{A}} - C_{\text{D}} } \right\|}} $$

The curvilinear path of the thoracic aorta was covered assigning values of θ i angle from 0° to 240°.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craiem, D., Chironi, G., Redheuil, A. et al. Aging Impact on Thoracic Aorta 3D Morphometry in Intermediate-Risk Subjects: Looking Beyond Coronary Arteries with Non-Contrast Cardiac CT. Ann Biomed Eng 40, 1028–1038 (2012). https://doi.org/10.1007/s10439-011-0487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0487-y

Keywords

Navigation