Skip to main content
Log in

Mitral Valve Annuloplasty

A Quantitative Clinical and Mechanical Comparison of Different Annuloplasty Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mitral valve annuloplasty is a common surgical technique used in the repair of a leaking valve by implanting an annuloplasty device. To enhance repair durability, these devices are designed to increase leaflet coaptation, while preserving the native annular shape and motion; however, the precise impact of device implantation on annular deformation, strain, and curvature is unknown. In this article, we quantify how three frequently used devices significantly impair native annular dynamics. In controlled in vivo experiments, we surgically implanted 11 flexible-incomplete, 11 semi-rigid-complete, and 12 rigid-complete devices around the mitral annuli of 34 sheep, each tagged with 16 equally spaced tantalum markers. We recorded four-dimensional marker coordinates using biplane videofluoroscopy, first with device and then without, which were used to create mathematical models using piecewise cubic splines. Clinical metrics (characteristic anatomical distances) revealed significant global reduction in annular dynamics upon device implantation. Mechanical metrics (strain and curvature fields) explained this reduction via a local loss of anterior dilation and posterior contraction. Overall, all three devices unfavorably caused reduction in annular dynamics. The flexible-incomplete device, however, preserved native annular dynamics to a larger extent than the complete devices. Heterogeneous strain and curvature profiles suggest the need for heterogeneous support, which may spawn more rational design of annuloplasty devices using design concepts of functionally graded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. W. Freed, H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. OGara, R. A. ORourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, and B. Riegel. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114:E84–E231, 2006.

    Article  PubMed  Google Scholar 

  2. Borghetti, V., M. Campana, C. Scotti, D. Domenighini, P. Totaro, G. Coletti, M. Pagani, and R. Lorusso. Biological versus prosthetic ring in mitral-valve repair: enhancement of mitral annulus dynamics and left-ventricular function with pericardial annuloplasty at long term. Eur. J. Cardiothorac. Surg. 17:431–439, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Bothe, W., P. A. Chang, J. C. Swanson, A. Itoh, K. Arata, N. B. Ingels, and D. C. Miller. Releasable annuloplasty ring insertion—a novel experimental implantation model. Eur. J. Cardiothorac. Surg. 36:830–832, 2009.

    Article  PubMed  Google Scholar 

  4. Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Göktepe, J. C. Swanson, S. Farahmandnia, N. B. Ingels, and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124:S81–S96, 2011.

    Article  PubMed  Google Scholar 

  5. Bothe, W., J. P. E. Kvitting, J. C. Swanson, S. Göktepe, K. N. Vo, N. B. Ingels, and D. C. Miller. How do annuloplasty rings affect mitral leaflet dynamic motion? Eur. J. Cardiothorac. Surg. 38:340–349, 2010.

    Article  PubMed  Google Scholar 

  6. Carlhäll, C., L. Wigström, E. Heiberg, M. Karlsson, A. F. Bolger, and E. Nylander. Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change. Am. J. Physiol. Heart Circ. Physiol. 287:H1836–1841, 2004.

    Article  PubMed  Google Scholar 

  7. Carpentier, A. F. La valvuloplastie reconstitutive. Une nouvelle technique de valvuloplastie mitrale. Presse Medicale 77:251–253, 1969,

    PubMed  CAS  Google Scholar 

  8. Carpentier, A. F., D. H. Adams, and F. Filsoufi. Carpentier’s Reconstructive Valve Surgery. Philadelphia, PA: Elsevier Saunders, 2010.

  9. Carpentier, A.F., A. Lessana, J. Y. Relland, E. Belli, S. Mihaileanu, A. J. Berrebi, E. Palsky, and D. F. Loulmet. The “Physio-Ring”: an advanced concept in mitral valve annuloplasty. Ann. Thorac. Surg. 60:1177–1186, 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Cosgrove, D. M., J. M. Arcidi, L. Rodriguez, W. J. Stewart, K. Powell, and J. D. Thomas. Initial experience with the Cosgrove–Edwards Annuloplasty System. Ann. Thorac. Surg. 60:499–503, 1995.

    Article  PubMed  Google Scholar 

  11. Dall’Agata, A., M. A. Taams, P. M. Fioretti, J. R. Roelandt, and L. A. Van Herwerden. Cosgrove–Edwards mitral ring dynamics measured with transesophageal three-dimensional echocardiography. Ann. Thorac. Surg. 65:485–490, 1998.

    Article  PubMed  Google Scholar 

  12. Daughters, G., and W. Sanders. A comparison of two analytical systems for 3-D reconstruction from biplane videoradiograms. Proc. Comput. Cardiol. (IEEE) 15:79–82, 1988.

    Google Scholar 

  13. De Bonis, M., M. Taramasso, A. Grimaldi, F. Maisano, M. C. Calabrese, A. Verzini, D. Ferrara, and O. Alfieri. The GeoForm annuloplasty ring for the surgical treatment of functional mitral regurgitation in advanced dilated cardiomyopathy. Eur. J. Cardiothorac. Surg. 40:488–495, 2011.

    PubMed  Google Scholar 

  14. De Oliveira, J.M.F., and M. J. Antunes. Mitral valve repair: better than replacement. Heart 92:275–281, 2006.

    Article  Google Scholar 

  15. Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, R. C. Gorman, and M.S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.

    Article  PubMed  Google Scholar 

  16. Enriquez-Sarano, M., C. W. Akins, and A. Vahanian. Mitral regurgitation. Lancet 373:1382–1394, 2009.

    Google Scholar 

  17. Farin, G. A. Curves and Surfaces for Computer Aided Geometric Design. San Diego: Morgan-Kaufmann Publishers, 2002.

  18. Gillinov, A. M., D. M. Cosgrove, T. Shiota, J. Qin, H. Tsujino, W. J. Stewart, J. D. Thomas, M. Porqueddu, J. A. White, and H. Blackstone. Cosgrove-Edwards annuloplasty system: midterm results. Ann. Thorac. Surg. 69:717–721, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Glasson, J. R., G. R. Green, J. F. Nistal, P. Dagum, M. Komeda, G. T. Daughters, A. F. Bolger, L. E. Foppiano, N. B. Ingels, and D. C. Miller. Mitral annular size and shape in sheep with annuloplasty rings. J. Thorac. Cardiovasc. Surg. 117:302–309, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Göktepe, S., W. Bothe, J. P. Kvitting, J. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Anterior mitral leaflet curvature in the beating ovine heart. A case study using videofluoroscopic markers and subdivision surfaces. Biomech. Model. Mechanobiol. 9:281–293, 2010.

    Article  PubMed  Google Scholar 

  21. Hu, X., and Q. Zhao. Systematic evaluation of the flexible and rigid annuloplasty ring after mitral valve repair for mitral regurgitation. Eur. J. Cardiothorac. Surg. 40:480–487, 2011.

    PubMed  Google Scholar 

  22. Itoh, A., G. Krishnamurthy, J. Swanson, D. Ennis, W. Bothe, E. Kuhl, M. Karlsson, L. Davis, D. C. Miller, and N. B. Ingels. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 296:1766–1773, 2009.

    Article  Google Scholar 

  23. Jensen, M. O., H. Jensen, M. Smerup, R. A. Levine, A. P. Yoganathan, H. Nygaard, J. M. Hasenkam, and S. L. Nielsen. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings. Circulation 118:S250–5255, 2008.

    Article  PubMed  Google Scholar 

  24. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  PubMed  Google Scholar 

  25. Kaplan, S. R., G. Bashein, F.H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139:378–387, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Kheradvar, A., and M. Gharib. On mitral valve dynamics and its connection to early diastolic flow. Ann. Biomed. Eng. 37:1–13, 2009.

    Article  PubMed  Google Scholar 

  27. Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson-Birchill, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295:H1141–H1149, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Krishnamurthy, G., A. Itoh, W. Bothe, J. Swanson, E. Kuhl, M. Karlsson, D. C. Miller, and N. B. Ingels. Stress–strain behavior of mitral valve leaflets in the beating ovine heart. J. Biomech. 42:1909–1916, 2009.

    Article  PubMed  Google Scholar 

  29. Krishnamurthy, G., A. Itoh, J. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels. Regional stiffening of the mitral valve anterior leaflet in the beating heart. J. Biomech. 42:2697–2701, 2009.

    Article  PubMed  Google Scholar 

  30. Kvitting, J. P. E., W. Bothe, S. Göktepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122:1683–1689, 2010.

    Article  PubMed  Google Scholar 

  31. Lansac, E., K. H. Lim, Y. Shomura, W. A. Goetz, H. S. Lim, N. T. Rice, H. Saber, and C. M. G. Duran. Dynamic balance of the aortomitral junction. J. Thorac. Cardiovasc. Surg. 123:911–918, 2002.

    Article  PubMed  Google Scholar 

  32. Levine, R. A., M. D. Handschumacher, A. J. Sanfilippo, A. A. Hagege, P. Harrigan, J. E. Marshall, and A. E. Weyman. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 80:589–598, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. McGoon, D. C. Repair of mitral insufficiency due to ruptured chordae tendineae. J. Thorac. Cardiovasc. Surg. 39:357–359, 1960.

    Google Scholar 

  34. Niczyporuk, M. A., and D. C. Miller. Automatic tracking and digitization of multiple radiopaque myocardial markers. Comput. Biomed. Res. 24:129–142, 1991.

    Google Scholar 

  35. Okada, Y., T. Shomura, Y. Yamaura, and J. Yoshikawa. Comparison of the Carpentier and Duran prosthetic rings used in mitral reconstruction. Ann. Thorac. Surg. 59:658–662, 1995.

    Article  PubMed  CAS  Google Scholar 

  36. Ormiston, J. A., P. M. Shah, C. Tei, and M. Wong. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64:113–120, 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, M. S. Sacks, A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.

    Article  PubMed  Google Scholar 

  38. Rajagopal, A., P. Fischer, E. Kuhl, and P. Steinmann. Natural element analysis of the Cahn–Hilliard phase-field model. Comput. Mech. 46:471–493, 2010.

    Article  Google Scholar 

  39. Rausch, M. K., W. Bothe, J. P. E. Kvitting, S. Göktepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44:1149–1157, 2011.

    Article  PubMed  Google Scholar 

  40. Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller and E. Kuhl. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39:1690–1702, 2011.

    Article  PubMed  Google Scholar 

  41. Redmond, J., D. Christiansen, C. Bergin, L. Leuer, T. Ryan, N. Rakow, N. Barka, T. Billstrom, J. A. St Cyr, L. M. Shecterle, and E. Grossi. In-vivo motion of mitral valve annuloplasty devices. J. Heart Valve Dis. 17:110–117, 2008.

    PubMed  Google Scholar 

  42. Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, R. J. Levy, R. C. Gorman, and J.H. Gorman. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82:1369–1377, 2006.

    Article  PubMed  Google Scholar 

  43. Salgo, I. S. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717, 2002.

    Article  PubMed  Google Scholar 

  44. Stephens, E. H., T. C. Nguyen, A. Itoh, N. B. Ingels, D. C. Miller, and K. J. Grande-Allen. The effects of mitral regurgitation alone are sufficient for leaflet remodeling. Circulation 118:S243–S249, 2008.

    Article  PubMed  Google Scholar 

  45. Timek, T. A., D. C. Miller. Experimental and clinical assessment of mitral annular area and dynamics: what are we actually measuring? Ann. Thorac. Surg. 72:966–974, 2001.

    Article  PubMed  CAS  Google Scholar 

  46. van Rijk-Zwikker, G. L., F. Mast, J. J. Schipperheyn, H. A. Huysmans, and A. V. Bruschke. Comparison of rigid and flexible rings for annuloplasty of the porcine mitral valve. Circulation 82:IV58–IV64, 1990.

    PubMed  Google Scholar 

  47. Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. M. Montevecchi, and A. Redaelli. The Geoform disease-specific annuoloplasty system: a finite element study. Ann. Thorac. Surg 84:92-102, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Paul Chang, Eleazar P. Briones, Lauren R. Davis, and Kathy N. Vo for technical assistance; Maggie Brophy and Sigurd Hartnett for careful marker image digitization; and George T. Daughters III for computation of 4D data from biplane 2D marker coordinates. This study was supported in part by the Deutsche Herzstiftung, Frankfurt, Germany, Research Grant S/06/07 to Wolfgang Bothe; by the U.S.-Norway Fulbright Foundation, the Swedish Heart-Lung Foundation, and the Swedish Society for Medical Research to John-Peder Escobar Kvitting; by the Western States Affiliate American Heart Association Fellowship to Julia C. Swanson; by US National Institutes of Health grants R01 HL29589 and R01 HL67025 to D. Craig Miller; and by the US National Science Foundation grant CAREER award CMMI-0952021 to Ellen Kuhl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rausch, M.K., Bothe, W., Kvitting, JP.E. et al. Mitral Valve Annuloplasty. Ann Biomed Eng 40, 750–761 (2012). https://doi.org/10.1007/s10439-011-0442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0442-y

Keywords

Navigation