Skip to main content
Log in

Viscoelastic Properties of the Rat Brain in the Sagittal Plane: Effects of Anatomical Structure and Age

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2012

Abstract

Rat is the most commonly used animal model for the study of traumatic brain injury. Recent advances in imaging and computational modeling technology offer the promise of biomechanical models capable of resolving individual brain structures and offering greater insight into the causes and consequences of brain injury. However, there is insufficient data on the mechanical properties of brain structures available to populate these models. In this study, we used microindentation to determine viscoelastic properties of different anatomical structures in sagittal slices of juvenile and adult rat brain. We find that the rat brain is spatially heterogeneous in this anatomical plane supporting previous results in the coronal plane. In addition, the brain becomes stiffer and more heterogeneous as the animal matures. This dynamic, region-specific data will support the development of more biofidelic computational models of brain injury biomechanics and the testing of hypotheses about the manner in which different anatomical structures are injured in a head impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adams, H., D. E. Mitchell, D. I. Graham, and D. Doyle. Diffuse brain damage of immediate impact type. Its relationship to ‘primary brain-stem damage’ in head injury. Brain 100(3):489–502, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Allen, M. P. Understanding Regression Analysis. New York: Plenum Press, 1997.

    Google Scholar 

  3. Begonia, M. T., R. Prabhu, J. Liao, M. F. Horstemeyer, and L. N. Williams. The influence of strain rate dependency on the structure-property relations of porcine brain. Ann. Biomed. Eng. 38(10):3043–3057, 2010.

    Article  PubMed  Google Scholar 

  4. Bolander, R., B. Mathie, C. Bir, D. Ritzel, and P. Vandevord. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann. Biomed. Eng. 2011. doi:10.1007/s10439-011-0343-0.

  5. Boretius, S., O. Natt, T. Watanabe, R. Tammer, L. Ehrenreich, J. Frahm, and T. Michaelis. In vivo diffusion tensor mapping of the brain of squirrel monkey, rat, and mouse using single-shot STEAM MRI. MAGMA 17(3–6):339–347, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Chatelin, S., A. Constantinesco, and R. Willinger. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47(5):255–276, 2010.

    PubMed  Google Scholar 

  7. Christ, A. F., K. Franze, H. Gautier, P. Moshayedi, J. Fawcett, R. J. Franklin, R. T. Karadottir, and J. Guck. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 43(15):2986–2992, 2010.

    Article  PubMed  Google Scholar 

  8. Cloots, R. J., H. M. Gervaise, J. A. van Dommelen, and M. G. Geers. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36(7):1203–1215, 2008.

    Article  PubMed  CAS  Google Scholar 

  9. Cloots, R. J., J. A. van Dommelen, T. Nyberg, S. Kleiven, and M. G. Geers. Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Biomech. Model. Mechanobiol. 10(3):413–422, 2011.

    Article  PubMed  CAS  Google Scholar 

  10. Davidsson, J., and M. A. Risling. New model to produce sagittal plane rotational induced diffuse axonal injuries. Front. Neurol. 2:41, 2011.

    PubMed  Google Scholar 

  11. Elkin, B. S., E. U. Azeloglu, K. D. Costa, and B. Morrison, III. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24(5):812–822, 2007.

    Article  PubMed  Google Scholar 

  12. Elkin, B. S., A. Ilankovan, and B. Morrison, III. Age-dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132(1):011010, 2010.

    Article  PubMed  Google Scholar 

  13. Elkin, B. S., A. Ilankovan, and B. Morrison III. A detailed viscoelastic characterization of the rat brain. J. Neurotrauma 2011. doi:10.1089/neu.2010.1604.

  14. Elliott, D. M., and L. A. Setton. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123(3):256–263, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Ewing-Cobbs, L., M. R. Prasad, P. Swank, L. Kramer, C. S. Cox, Jr., J. M. Fletcher, M. Barnes, X. Zhang, and K. M. Hasan. Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. Neuroimage 42(4):1305–1315, 2008.

    Article  PubMed  Google Scholar 

  16. Fijalkowski, R. J., B. D. Stemper, F. A. Pintar, N. Yoganandan, M. J. Crowe, and T. A. Gennarelli. New rat model for diffuse brain injury using coronal plane angular acceleration. J. Neurotrauma 24(8):1387–1398, 2007.

    Article  PubMed  Google Scholar 

  17. Garman, R. H., L. W. Jenkins, R. C. Switzer, R. A. Bauman, L. C. Tong, P. V. Swauger, S. A. Parks, D. V. Ritzel, C. E. Dixon, R. S. Clark, et al. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J. Neurotrauma 28(6):947–959, 2011.

    Article  PubMed  Google Scholar 

  18. Gefen, A., N. Gefen, Q. Zhu, R. Raghupathi, and S. S. Margulies. Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20(11):1163–1177, 2003.

    Article  PubMed  Google Scholar 

  19. Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, et al. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17–80, 2007.

    PubMed  Google Scholar 

  20. Hayes, W. C., G. Herrmann, L. F. Mockros, and L. M. Keer. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5(5), 541–551, 1972.

    Article  PubMed  CAS  Google Scholar 

  21. Hill, S. J., E. Barbarese, and T. K. McIntosh. Regional heterogeneity in the response of astrocytes following traumatic brain injury in the adult rat. J. Neuropathol. Exp. Neurol. 55(12):1221–1229, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Kaster, T., I. Sack, and A. Samani. Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44(6):1158–1163, 2011.

    Article  PubMed  CAS  Google Scholar 

  23. Kilbourne, M., R. Kuehn, C. Tosun, J. Caridi, K. Keledjian, G. Bochicchio, T. Scalea, V. Gerzanich, and J. M. Simard. Novel model of frontal impact closed head injury in the rat. J. Neurotrauma 26(12):2233–2243, 2009.

    Article  PubMed  Google Scholar 

  24. Mao, H., X. Jin, L. Zhang, K. H. Yang, T. Igarashi, L. J. Noble-Haeusslein, and A. I. King. Finite element analysis of controlled cortical impact-induced cell loss. J. Neurotrauma 27(5):877–888, 2010.

    Article  PubMed  Google Scholar 

  25. Massey, F. J. The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253):68–78, 1951.

    Article  Google Scholar 

  26. Morales, D. M., N. Marklund, D. Lebold, H. J. Thompson, A. Pitkanen, W. L. Maxwell, L. Longhi, H. Laurer, M. Maegele, E. Neugebauer, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136(4):971–989, 2005.

    Article  PubMed  CAS  Google Scholar 

  27. Morrison, III, B., D. F. Meaney, and T. K. McIntosh. Mechanical characterization of an in vitro device designed to quantitatively injure living brain tissue. Ann. Biomed. Eng. 26(3):381–390, 1998.

    Article  PubMed  Google Scholar 

  28. Pierpaoli, C., and P. J. Basser. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36(6):893–906, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Pleasant, J. M., S. W. Carlson, H. Mao, S. W. Scheff, K. H. Yang, and K. E. Saatman. Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J. Neurotrauma 2011. doi:10.1089/neu.2010.1499.

  30. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2):244–252, 2002.

    Article  PubMed  Google Scholar 

  31. Saatman, K. E., A. C. Duhaime, R. Bullock, A. I. Maas, A. Valadka, and G. T. Manley. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25(7):719–738, 2008.

    Article  PubMed  Google Scholar 

  32. Schulze-Bauer, C. A., C. Morth, and G. A. Holzapfel. Passive biaxial mechanical response of aged human iliac arteries. J. Biomech. Eng. 125(3):395–406, 2003.

    Article  PubMed  Google Scholar 

  33. Shulyakov, A. V., S. S. Cenkowski, R. J. Buist, and M. R. Del Bigio. Age-dependence of intracranial viscoelastic properties in living rats. J. Mech. Behav. Biomed. Mater. 4(3):484–497, 2011.

    Article  PubMed  Google Scholar 

  34. Thibault, K. L., and S. S. Margulies. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31(12):1119–1126, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. van Dommelen, J. A., T. P. van der Sande, M. Hrapko, and G. W. Peters. Mechanical properties of brain tissue by indentation: interregional variation. J. Mech. Behav. Biomed. Mater. 3(2):158–166, 2010.

    Article  PubMed  Google Scholar 

  36. Wahi, K. K. Mechanical response of a head injury model with viscoelastic brain tissue. Ann. Biomed. Eng. 5(4):303–321, 1977.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, H. C., Z. X. Duan, F. F. Wu, L. Xie, H. Zhang, and Y. B. Ma. A new rat model for diffuse axonal injury using a combination of linear acceleration and angular acceleration. J. Neurotrauma 27(4):707–719, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Ed X. Guo for laboratory space and equipment. This study was supported by NHTSA Project # DTNH22-08-C-00088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barclay Morrison III.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-012-0537-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finan, J.D., Elkin, B.S., Pearson, E.M. et al. Viscoelastic Properties of the Rat Brain in the Sagittal Plane: Effects of Anatomical Structure and Age. Ann Biomed Eng 40, 70–78 (2012). https://doi.org/10.1007/s10439-011-0394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0394-2

Keywords

Navigation