Skip to main content

Advertisement

Log in

Design and Validation of a Novel Bioreactor to Subject Aortic Valve Leaflets to Side-Specific Shear Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hemodynamic stresses are presumed to play an important role in the development of calcific aortic valve disease (CAVD). The elucidation of the shear stress mechanisms involved in the pathogenesis of CAVD has been hampered by the complexity of the native unsteady and side-specific valvular flow environment. To address this gap, this article describes the design and validation of a novel device to expose leaflet samples to time-dependent side-specific shear stress. The device built on a double cone-and-plate geometry was dimensioned based on our previous single-sided shear stress device that minimizes secondary flow effects inherent to this geometry. A fluid–structure interaction (FSI) model was designed to predict the actual shear stress produced on a tissue sample mounted in the new device. Staining was performed on porcine leaflets conditioned in the new bioreactor to assess endothelial integrity and cellular apoptosis. The FSI results demonstrated good agreement between the target (native) and the actual side-specific shear stress produced on a tissue sample. No significant difference in endothelial integrity and cellular apoptosis was detected between samples conditioned for 96 h and fresh controls. This new device will enable the investigation of valvular response to normal and pathologic hemodynamics and the potential mechano-etiology of CAVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.

    Article  PubMed  Google Scholar 

  2. Beppu, S., S. Suzuki, H. Matsuda, F. Ohmori, S. Nagata, and K. Miyatake. Rapidity of progression of aortic stenosis in patients with congenital bicuspid aortic valves. Am. J. Cardiol. 71:322–327, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Blackman, B. R., K. A. Barbee, and L. E. Thibault. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann. Biomed. Eng. 28:363–372, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Blackman, B. R., G. Garcia-Cardena, and M. A. Gimbrone, Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng. 124:397–407, 2002.

    Google Scholar 

  5. Breen, L. T., P. E. McHugh, B. A. McCormack, G. Muir, N. J. Quinlan, K. B. Heraty, and B. P. Murphy. Development of a novel bioreactor to apply shear stress and tensile strain simultaneously to cell monolayers. Rev. Sci. Instrum. 77:104301, 2006.

    Article  Google Scholar 

  6. Brewer, R. J., R. M. Mentzer, Jr., J. D. Deck, R. C. Ritter, J. S. Trefil, and S. P. Nolan. An in vivo study of the dimensional changes of the aortic valve leaflets during the cardiac cycle. J. Thorac. Cardiovasc. Surg. 74:645–650, 1977.

    PubMed  CAS  Google Scholar 

  7. Buschmann, M. H., P. Dieterich, and N. A. Adams. Analysis of flow in cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol. Bioeng. 89:493–502, 2004.

    Article  Google Scholar 

  8. Bussolari, S. R., C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Apparatus for subjecting living cells to fluid shear stress. Rev. Sci. Instrum. 53:1851–1854, 1982.

    Google Scholar 

  9. Butcher, J. T., A. M. Penrod, A. J. Garcia, and R. M. Nerem. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 24:1429–1434, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Butcher, J. T., C. A. Simmons, and J. N. Warnock. Mechanobiology of the aortic heart valve. J. Heart Valve Dis. 17:62–73, 2008.

    PubMed  Google Scholar 

  11. Cacciola, G., G. W. Peters, and P. J. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33:521–530, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Chambers, J. B. Aortic stenosis. Eur. J. Echocardiogr. 10:i11–i19, 2009.

    Article  PubMed  Google Scholar 

  13. Chung, C. A., M. R. Tzou, and R. W. Ho. Oscillatory flow in a cone-and-plate bioreactor. J. Biomech. Eng. 127:601–610, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Dai, G., S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. 101:14871–14876, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. De Hart, J., F. P. Baaijens, G. W. Peters, and P. J. Schreurs. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712, 2003.

    Article  PubMed  Google Scholar 

  16. De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A two-dimensional fluid-structure interaction model of the aortic valve. J. Biomech. 33:1079–1088, 2000.

    Article  PubMed  Google Scholar 

  17. De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.

    Article  PubMed  Google Scholar 

  18. Deck, J. D. Endothelial cell orientation on aortic valve leaflets. Cardiovasc. Res. 20:760–767, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Dewey, C. F., Jr., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.

    Google Scholar 

  20. Donea, J., S. Guiliani, and J. P. Halleux. An arbitrary Lagrangian-Eulerian finite-element method for transient dynamic fluid structure interactions. Comput. Methods Appl. Mech. Eng. 33:689–723, 1982.

    Article  Google Scholar 

  21. Fewell, M. E., and J. D. Hellums. The secondary flow of Newtonian fluids in cone-and-plate viscometers. Trans. Soc. Rheol. 21:535–565, 1977.

    Article  Google Scholar 

  22. Ge, L., and F. Sotiropoulos. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J. Biomech. Eng. 132:014505, 2010.

    Article  PubMed  Google Scholar 

  23. Go, Y. M., R. P. Patel, M. C. Maland, H. Park, J. S. Beckman, V. M. Darley-Usmar, and H. Jo. Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am. J. Physiol. 277:H1647–H1653, 1999.

    PubMed  CAS  Google Scholar 

  24. Haj-Ali, R., L. P. Dasi, H. S. Kim, J. Choi, H. W. Leo, and A. P. Yoganathan. Structural simulations of prosthetic tri-leaflet aortic heart valves. J. Biomech. 41:1510–1519, 2008.

    Article  PubMed  Google Scholar 

  25. Hajra, L., A. I. Evans, M. Chen, S. J. Hyduk, T. Collins, and M. I. Cybulsky. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl Acad. Sci. USA 97:9052–9057, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Jo, H., H. Song, and A. Mowbray. Role of NADPH oxidases in disturbed flow- and BMP4- induced inflammation and atherosclerosis. Antioxidants Redox Signal. 8:1609–1619, 2006.

    Article  CAS  Google Scholar 

  27. Kadem, L., J. G. Dumesnil, R. Rieu, L. G. Durand, D. Garcia, and P. Pibarot. Impact of systemic hypertension on the assessment of aortic stenosis. Heart 91:354–361, 2005.

    Article  PubMed  CAS  Google Scholar 

  28. Kaden, J. J., and D. Haghi. Hypertension in aortic valve stenosis—a Trojan horse. Eur. Heart J. 29:1934–1935, 2008.

    Article  PubMed  Google Scholar 

  29. Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Ku, C. H., P. H. Johnson, P. Batten, P. Sarathchandra, R. C. Chambers, P. M. Taylor, M. H. Yacoub, and A. H. Chester. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71:548–556, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Leo, H. L., L. P. Dasi, J. Carberry, H. A. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34:936–952, 2006.

    Article  PubMed  Google Scholar 

  32. Leo, H. L., H. Simon, J. Carberry, S. C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33:429–443, 2005.

    Article  PubMed  Google Scholar 

  33. Lim, W. L., Y. T. Chew, T. C. Chew, and H. T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34:1417–1427, 2001.

    Article  PubMed  CAS  Google Scholar 

  34. Mascherbauer, J., C. Fuchs, M. Stoiber, H. Schima, E. Pernicka, G. Maurer, and H. Baumgartner. Systemic pressure does not directly affect pressure gradient and valve area estimates in aortic stenosis in vitro. Eur. Heart J. 29:2049–2057, 2008.

    Article  PubMed  Google Scholar 

  35. Merryman, W. D. Mechano-potential etiologies of aortic valve disease. J. Biomech. 43:87–92, 2010.

    Article  Google Scholar 

  36. Mooney, M., and R. H. Ewart. The conicylindrical viscometer. Physics 5:350–354; 350, 1934.

    Google Scholar 

  37. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006.

    Article  PubMed  Google Scholar 

  38. Otto, C. M. Valvular aortic stenosis: disease severity and timing of intervention. J. Am. Coll. Cardiol. 47:2141–2151, 2006.

    Article  PubMed  Google Scholar 

  39. Otto, C. M., J. Kuusisto, and D. D. Reichenbach. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90:844–853, 1994.

    PubMed  CAS  Google Scholar 

  40. Pelech, I., and A. H. Shapiro. Flexible disk rotating on a gas film next to a wall. J. Appl. Mech. 31:577–584, 1964.

    Google Scholar 

  41. Platt, M. O., Y. Xing, H. Jo, and A. P. Yoganathan. Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves. J. Heart Valve Dis. 15:622–629, 2006.

    PubMed  Google Scholar 

  42. Rabkin, S. W. The association of hypertension and aortic valve sclerosis. Blood Press. 14:264–272, 2005.

    Article  PubMed  Google Scholar 

  43. Rajamannan, N. M., M. Subramaniam, D. Rickard, S. R. Stock, J. Donovan, M. Springett, T. Orszulak, D. A. Fullerton, A. J. Tajik, R. O. Bonow, and T. Spelsberg. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184, 2003.

    Article  PubMed  Google Scholar 

  44. Sdougos, H. P., S. R. Bussolari, and C. F. Dewey. Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech. 138:379–404, 1984.

    Article  Google Scholar 

  45. Sotiropoulos, F., and I. Borazjani. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47:245–256, 2009.

    Article  PubMed  Google Scholar 

  46. Strickberger, S. A., S. P. Schulman, and G. M. Hutchins. Association of Paget’s disease of bone with calcific aortic valve disease. Am. J. Med. 82:953–956, 1987.

    Article  PubMed  CAS  Google Scholar 

  47. Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009.

    Article  PubMed  CAS  Google Scholar 

  48. Sucosky, P., M. Padala, A. Elhammali, K. Balachandran, H. Jo, and A. P. Yoganathan. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J. Biomech. Eng. 130:035001-1–035001-8, 2008.

    Google Scholar 

  49. Thubrikar, M., S. P. Nolan, L. P. Bosher, and J. D. Deck. The cyclic changes and structure of the base of the aortic valve. Am. Heart J. 99:217–224, 1980.

    Article  PubMed  CAS  Google Scholar 

  50. Thubrikar, M., W. C. Piepgrass, L. P. Bosher, and S. P. Nolan. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ. Res. 47:792–800, 1980.

    PubMed  CAS  Google Scholar 

  51. Weinberg, E. J., and M. R. Kaazempur Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–3487, 2008.

    Article  PubMed  Google Scholar 

  52. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng. 27:572–579, 1999.

    Article  PubMed  CAS  Google Scholar 

  53. Weston, M. W., and A. P. Yoganathan. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann. Biomed. Eng. 29:752–763, 2001.

    Article  PubMed  CAS  Google Scholar 

  54. Xing, Y., J. N. Warnock, Z. He, S. L. Hilbert, and A. P. Yoganathan. Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude- and frequency-dependent manner. Ann. Biomed. Eng. 32:1461–1470, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Fotis Sotiropoulos and Dr. Liang Ge (University of Minnesota, Minneapolis, MN) for providing the shear stress data of their computational fluid dynamic aortic valve model; Dr. Santanu Chandra (University of Notre Dame, Notre Dame, IN) for his feedback; and Martin’s Custom Butchering (Wakarusa, IN) for supplying porcine hearts for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Sucosky.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Rajamannan, N.M. & Sucosky, P. Design and Validation of a Novel Bioreactor to Subject Aortic Valve Leaflets to Side-Specific Shear Stress. Ann Biomed Eng 39, 2174–2185 (2011). https://doi.org/10.1007/s10439-011-0305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0305-6

Key terms

Navigation