Skip to main content
Log in

Effects of the Purkinje System and Cardiac Geometry on Biventricular Pacing: A Model Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Heart failure leads to gross cardiac structural changes. While cardiac resynchronization therapy (CRT) is a recognized treatment for restoring synchronous activation, it is not clear how changes in cardiac shape and size affect the electrical pacing therapy. This study used a human heart computer model which incorporated anatomical structures such as myofiber orientation and a Purkinje system (PS) to study how pacing affected failing hearts. The PS was modeled as a tree structure that reproduced its retrograde activation feature. In addition to a normal geometry, two cardiomyopathies were modeled: dilatation and hypertrophy. A biventricular pacing protocol was tested in the context of atrio-ventricular block. The contribution of the PS was examined by removing it, as well as by increasing endocardial conductivity. Results showed that retrograde conduction into the PS was a determining factor for achieving intraventricular synchrony. Omission of the PS led to an overestimate of the degree of electrical dyssynchrony while assessing CRT. The activation patterns for the three geometries showed local changes in the order of activation of the lateral wall in response to the same pacing strategy. These factors should be carefully considered when determining lead placement and optimizing device parameters in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5

Similar content being viewed by others

References

  1. Abraham, W. T., Rationale and design of a randomized clinical trial to assess the safety and efficacy of cardiac resynchronization therapy in patients with advanced heart failure: the Multicenter Insync Randomized Clinical Evaluation (MIRACLE), J. Card Fail. 6(4):369–380, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Boyle, P., M. Deo, and E. Vigmond. Behaviour of the Purkinje system during defibrillation-strength shocks. In: Proc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS, 2007, pp. 419–422.

  3. Camm, A. J., T. F. Lüscher, and P. Serruys, Eds., The ESC Textbook of Cardiovascular Medicine. Wiley-Blackwell Publishing, Oxford, UK, 2006.

  4. Castellant, P., M. Fatemi, E. Orhan, Y. Etienne, and J. J. Blanc, Patients with non-ischaemic dilated cardiomyopathy and hyper-responders to cardiac resynchronization therapy: characteristics and long-term evolution, Europace 11:350–355, 2009.

    Article  PubMed  Google Scholar 

  5. Cazeau, S., C. Alonso, G. Jauvert, A. Lazarus, and P. Ritter, Cardiac resynchronization therapy, Europace, 5(Suppl 1):S42–S48, 2004.

    Article  PubMed  Google Scholar 

  6. Chung, E. S., A. R. Leon, L. Tavazzi, J.-P. Sun, P. Nihoyannopoulos, J. Merlino, W. T. Abraham, S. Ghio, C. Leclercq, J. J. Bax, C.-M. Yu, J. Gorcsan, M. S. J. Sutton, J. D. Sutter, and J. Murillo, Results of the predictors of response to CRT (PROSPECT) trial, Circulation, 117(20):2608–2616, 2008.

    Article  PubMed  Google Scholar 

  7. Clerc, L., Directional differences of impulse spread in trabecular muscle from mammalian heart, J. Physiol. 255(2):335–346, 1976.

    CAS  PubMed  Google Scholar 

  8. Colli-Franzone, P., L. Guerri, M. Pennachio, and B. Taccardi, Spread of excitation in 3-d models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry, Math. Biosci. 147:131–171, 1998.

    Article  Google Scholar 

  9. DiFrancesco, D., and D. Noble. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R Soc. Lond. B Biol. Sci. 307(1133):353–398, 1985.

    Article  CAS  PubMed  Google Scholar 

  10. Durrer, D., R. T. van Dam, G. E. Freud, M. J. Janse, F. L. Meijler, and R. C. Arzbaecher. Total excitation of the isolated human heart. Circulation 41(6):899–912, 1970.

    CAS  PubMed  Google Scholar 

  11. Fenton, F. H., E. M. Cherry, A. Karma, and W.-J. Rappel, Modeling wave propagation in realistic heart geometries using the phase-field method, Chaos, 15(1):13502, 2005.

    Article  PubMed  Google Scholar 

  12. Frangi, A. F., D. Rueckert, J. A. Schnabel, and W. J. Niessen, Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling, IEEE Trans. Med. Imaging, 21(9):1151–1166, 2002.

    Article  PubMed  Google Scholar 

  13. Gassis, S., and A. R. León, Cardiac resynchronization therapy: strategies for device programming, troubleshooting and follow-up, J. Interv. Card Electrophysiol. 13(3): 209–222, 2005.

    Article  PubMed  Google Scholar 

  14. Henriquez, C., and A. Papazoglou, Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis, Proc. IEEE, 84(3):334–354, 1996.

    Article  CAS  Google Scholar 

  15. Jouk, P.-S., A. Mourad, V. Milisic, G. Michalowicz, A. Raoult, D. Caillerie, and Y. Usson, Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardiothorac. Surg. 31(5):915–921, 2007.

    Article  PubMed  Google Scholar 

  16. Kamireddy, S., S. K. Agarwal, E. Adelstein, S. Jain, and S. Saba. Correlation of electrical and mechanical reverse remodeling after cardiac resynchronization therapy. Ann. Noninvasive Electrocardiol. 14(2):153–157, 2009.

    Article  PubMed  Google Scholar 

  17. Kerckhoffs, R. C. P., P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, and T. Arts, Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart, J. Eng. Math. 47:201–216, 2003.

    Article  Google Scholar 

  18. Kerckhoffs, R. C. P., O. P. Faris, P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, E. R. McVeigh, and T. Arts, Timing of depolarization and contraction in the paced canine left ventricle: Model and experiment, J. Cardiovasc. Electrophysiol., 14:S188–S195, 2003.

    Article  PubMed  Google Scholar 

  19. Kimmel, M. W., N. D. Skadsberg, C. L. Byrd, D. J. Wright, T. G. Laske, and P. A. Iaizzo. Single-site ventricular and biventricular pacing: investigation of latest depolarization strategy. Europace 9:1163-1170, 2007.

    Article  PubMed  Google Scholar 

  20. MacGowan, G. A., E. P. Shapiro, H. Azhari, C. O. Siu, P. S. Hees, G. M. Hutchins, J. L. Weiss, and F. E. Rademakers, Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation 96:535–541, 1997.

    CAS  PubMed  Google Scholar 

  21. Massing, G. K., and T. N. James. Anatomical configuration of the his bundle and bundle branches in the human heart. Circulation 53(4):609–621, 1976.

    CAS  PubMed  Google Scholar 

  22. Myerburg, R. J., H. Gelband, K. Nilsson, A. Castellanos, A. R. Morales, and A. L. Bassett. The role of canine superficial ventricular muscle fibers in endocardial impulse distribution. Circ. Res. 42(1):27–35, 1978.

    CAS  PubMed  Google Scholar 

  23. Myerburg, R. J., K. Nilsson, and H. Gelband. Physiology of canine intraventricular conduction and endocardial excitation. Circ. Res. 30(2):217–243, 1972.

    CAS  PubMed  Google Scholar 

  24. Nanthakumar, K., J. Jalife, S. Masse, E. Downar, M. Pop, J. Asta, H. Ross, V. Rao, S. Mironov, E. Sevaptsidis, J. Rogers, G. Wright, and R. Dhopeshwarkar, Optical mapping of langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans, Am. J. Physiol. Heart Circ. Physiol., 293:H875–880, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Noble, D., From the hodgkin-huxley axon to the virtual heart, J. Physiol., 580(Pt 1):15–22, 2007.

    Article  CAS  PubMed  Google Scholar 

  26. Noble, D., and Y. Rudy, Models of cardiac ventricular action potentials: Iterative interaction between experiment and simulation, Philos. Trans. Math. Phys. Eng. Sci., 359(1783):1127–1142, 2001.

    Article  Google Scholar 

  27. Ordas, S., E. Oubel, R. Sebastian, and A. F. Frangi, Computational atlas of the heart. In: Proc. 15th International Symposium on Image and Signal Processing and Analysis (ISPA), 2007, pp. 338–342.

  28. Plank, G., M. Liebmann, R. W. dos Santos, E. J. Vigmond, and G. Haase. Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54(4):585–596, 2007.

    Article  PubMed  Google Scholar 

  29. Plonsey, R. Bioelectric sources arising in excitable fibers (alza lecture). Ann. Biomed. Eng., 16(6):519–546, 1988.

    Article  CAS  PubMed  Google Scholar 

  30. Pollard, A. E., M. J. Burgess, and K. W. Spitzer, Computer simulations of three-dimensional propagation in ventricular myocardium. effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation, Circ. Res. 72(4):744–756, 1993.

    CAS  PubMed  Google Scholar 

  31. Potse, M., B. Dub, J. Richer, A. Vinet, and R. M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Eng., 53(12 Pt 1): 2425–2435, 2006.

    Article  PubMed  Google Scholar 

  32. Ramanathan, C., P. Jia, R. Ghanem, K. Ryu, and Y. Rudy, Activation and repolarization of the normal human heart under complete physiological conditions. Proc. Natl. Acad. Sci. USA, 103(16):6309–6314, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Reumann, M., D. Farina, R. Miri, S. Lurz, B. Osswald, and O. Dössel, Computer model for the optimization of av and vv delay in cardiac resynchronization therapy, Med. Biol. Eng. Comput. 45(9)845–854, 2007.

    Article  PubMed  Google Scholar 

  34. Rinaldi, C. A., C. A. Bucknall, and J. S. Gill, Beneficial effects of biventricular pacing in a patient with hypertrophic cardiomyopathy and intraventricular conduction delay, Heart 87(6):e6, 2002.

    Article  CAS  PubMed  Google Scholar 

  35. Rodríguez, B., L. Li, J. C. Eason, I. R. Efimov, and N. A. Trayanova, Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks, Circ. Res. 97(2)168–175, 2005.

    Article  PubMed  Google Scholar 

  36. Shannon, J., C. O. Navarro, T. McEntee, G. Riddell, J. A. Adgey, and E. W. Lau. An early phase of slow myocardial activation may be necessary in order to benefit from cardiac resynchronization therapy. J. Electrocardiol. 41:531–535, 2008.

    Article  PubMed  Google Scholar 

  37. Streeter, D. Gross morphology and fiber geometry of the heart. In: Handbook of Physiology, The Cardiovascular System, vol. 1, edited by R. Berne. Bethesda, USA: American Physiological Society, 1979, pp. 61–112.

  38. Ten Tusscher, K. H. W. J., and A. V. Panfilov, Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. Med. Biol., 51(23): 6141–6156, 2006.

    Article  CAS  PubMed  Google Scholar 

  39. Ten Tusscher, K. H. W. J., and A. V. Panfilov, Modelling of the ventricular conduction system, Prog. Biophys. Mol. Biol. 96:152–170, 2008.

    Article  Google Scholar 

  40. Tezuka, F. The morphogenesis of left ventricular hypertrophy of heart as correlated with the muscle fiber orientation. In: Proc. of the First International Symposium of Science on Form, edited by Y. Kato, R. Takaki, and J. Toriwaki. Tokyo: KTK Scientific Publishers, 1986, pp. 579–584.

  41. Vigmond, E. J., and C. Clements. Construction of a computer model to investigate sawtooth effects in the Purkinje system. IEEE Trans. Biomed. Eng., 54(3):389–399, 2007.

    Article  PubMed  Google Scholar 

  42. Vigmond, E. J., C. Clements, D. M. McQueen, and C. S. Peskin, Effect of bundle branch block on cardiac output: a whole heart simulation study. Prog. Biophys. Mol. Biol., 97(2–3):520–542, 2008.

    Article  PubMed  Google Scholar 

  43. Vigmond, E. J., R. W. dos Santos, A. J. Prassl, M. Deo, and G. Plank, Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Biol. 96(1–3):3–18, 2008.

    Article  CAS  PubMed  Google Scholar 

  44. Vigmond, E. J., M. Hughes, G. Plank, and L. J. Leon. Computational tools for modeling electrical activity in cardiac tissue. J. Electrocardiol. 36(Suppl):69–74, 2003.

    Article  PubMed  Google Scholar 

  45. Whiteley, J. P. An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng. 53(11):2139–2147, 2006.

    Article  PubMed  Google Scholar 

  46. Yu, C.-M., D. L. Hayes, and A. Auricchio, Eds., Cardiac Resynchronization Therapy. Blackwell Publishing, Oxford, UK, 2006.

Download references

Acknowledgments

This research has been partially funded by the Industrial and Technological Development Center (CDTI) under the CENIT Programme (CDTEAM Project) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 224495 (euHeart Project). Dr. R. Sebastian was funded by the Ministerio de Ciencia e Innovacion (Juan de la Cierva program). Dr. B. Bijnens is an ICREA Research Professor at Universitat Pompeu Fabra. Dr. E. Vigmond and P. Boyle were funded by The Natural Sciences and Engineering Research Council of Canada. P. Boyle is supported by the Alberta Ingenuity Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Romero.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, D., Sebastian, R., Bijnens, B.H. et al. Effects of the Purkinje System and Cardiac Geometry on Biventricular Pacing: A Model Study. Ann Biomed Eng 38, 1388–1398 (2010). https://doi.org/10.1007/s10439-010-9926-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9926-4

Keywords

Navigation