Skip to main content
Log in

Permeability of Endothelial and Astrocyte Cocultures: In Vitro Blood–Brain Barrier Models for Drug Delivery Studies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L p), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L p and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2–4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abbott, N. J. Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200:629–638, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. Boveri, M., V. Berezowski, A. Price, S. Slupek, A. M. Lenfant, C. Benaud, T. Hartung, R. Cecchelli, P. Prieto, and M. P. Dehouck. Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia 51:187–198, 2005.

    Article  PubMed  Google Scholar 

  3. Bowman, P. D., S. R. Ennis, K. E. Rarey, A. L. Betz, and G. W. Goldstein. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann. Neurol. 14:396–402, 1983.

    Article  CAS  PubMed  Google Scholar 

  4. Braeckmans, K., L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys. J. 85:2240–2252, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Braga, J., J. M. Desterro, and M. Carmo-Fonseca. Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol. Biol. Cell 15:4749–4760, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, R. C., A. P. Morris, and R. G. O’Neil. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 1130:17–30, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Cancel, L. M., A. Fitting, and J. M. Tarbell. In vitro study of LDL transport under pressurized (convective) conditions. Am. J. Physiol. Heart Circ. Physiol. 293:H126–132, 2007.

    Article  CAS  PubMed  Google Scholar 

  8. Cancel, L. M., and J. M. Tarbell. The role of apoptosis in LDL transport through cultured endothelial cell monolayers. Atherosclerosis 208:335–341, 2010.

    Article  CAS  PubMed  Google Scholar 

  9. Crone, C., and S. P. Olesen. Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55, 1982.

    Article  CAS  PubMed  Google Scholar 

  10. Cucullo, L., M. S. McAllister, K. Kight, L. Krizanac-Bengez, M. Marroni, M. R. Mayberg, K. A. Stanness, and D. Janigro. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res. 951:243–254, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Deli, M. A., C. S. Abraham, Y. Kataoka, and M. Niwa. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25:59–127, 2005.

    Article  PubMed  Google Scholar 

  12. de Vries, H. E., M. C. M. BlomRoosemalen, M. van Oosten, A. G. deBoer, T. J. C. van Berkel, D. D. Breimer, and J. Kuiper. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J. Neuroimmunol. 64:37–43, 1996.

    Article  PubMed  Google Scholar 

  13. Engvall, E. Structure and function of basement membranes. Int. J. Dev. Biol. 39:781–787, 1995.

    CAS  PubMed  Google Scholar 

  14. Fletcher, N. F., D. J. Brayden, B. Brankin, S. Worrall, and J. J. Callanan. Growth and characterisation of a cell culture model of the feline blood-brain barrier. Vet. Immunol. Immunopathol. 109:233–244, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Fraser, P. A., A. D. Dallas, S. Davies, and P. A. Fraser. Measurement of filtration coefficient in single cerebral microvessels of the frog. J. Physiol. Lond. 423:343–361, 1990.

    CAS  PubMed  Google Scholar 

  16. Gaillard, P. J., and A. G. de Boer. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur. J. Pharm. Sci. 12:95–102, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Gumbleton, M., and K. L. Audus. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J. Pharm. Sci. 90:1681–1698, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Hamm, S., B. Dehouck, J. Kraus, K. Wolburg-Buchholz, H. Wolburg, W. Risau, R. Cecchelli, B. Engelhardt, and M. P. Dehouck. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 315:157–166, 2004.

    Article  PubMed  Google Scholar 

  19. Haseloff, R. F., I. E. Blasig, H. C. Bauer, and H. Bauer. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol. 25:25–39, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Hawkins, B. T., and T. P. Davis. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57:173–185, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Hurwitz, A. A., J. W. Berman, W. K. Rashbaum, and W. D. Lyman. Human fetal astrocytes induce the expression of blood-brain barrier specific proteins by autologous endothelial cells. Brain Res. 625:238–243, 1993.

    Article  CAS  PubMed  Google Scholar 

  22. Johnston, H., P. J. Baker, M. Abel, H. M. Charlton, G. Jackson, L. Fleming, T. R. Kumar, and P. J. O’Shaughnessy. Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 145:318–329, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Karyekar, C. S., A. Fasano, S. Raje, R. L. Lu, T. C. Dowling, and N. D. Eddington. Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J. Pharm. Sci. 92:414–423, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. Kemper, E. M., W. Boogerd, I. Thuis, J. H. Beijnen, and O. van Tellingen. Modulation of the blood-brain barrier in oncology: Therapeutic opportunities for the treatment of brain tumours? Cancer Treat. Rev. 30:415–423, 2004.

    Article  PubMed  Google Scholar 

  25. Kleinman, H. K., and G. R. Martin. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15:378–386, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Koto, T., K. Takubo, S. Ishida, H. Shinoda, M. Inoue, K. Tsubota, Y. Okada, and E. Ikeda. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am. J. Pathol. 170:1389–1397, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Kraus, J., K. Voigt, A. M. Schuller, M. Scholz, K. S. Kim, M. Schilling, W. R. Schabitz, P. Oschmann, and B. Engelhardt. Interferon-beta stabilizes barrier characteristics of the blood-brain barrier in four different species in vitro. Mult. Scler. 14:843–852, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence, J. R., G. M. Wolfaardt, and D. R. Korber. Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl. Environ. Microbiol. 60:1166–1173, 1994.

    CAS  PubMed  Google Scholar 

  29. LeBleu, V. S., B. Macdonald, and R. Kalluri. Structure and function of basement membranes. Exp. Biol. Med. (Maywood, N.J.) 232:1121–1129, 2007.

    Article  CAS  Google Scholar 

  30. Leblond, C. P., and S. Inoue. Structure, composition, and assembly of basement membrane. Am. J. Anat. 185:367–390, 1989.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, S. W., W. J. Kim, J. A. Park, Y. K. Choi, Y. W. Kwon, and K. W. Kim. Blood-brain barrier interfaces and brain tumors. Arch. Pharm. Res. 29:265–275, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Malina, K. C., I. Cooper, and V. I. Teichberg. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res. 1284:12–21, 2009.

    Article  Google Scholar 

  33. Michel, C. C., and F. E. Curry. Microvascular permeability. Physiol. Rev. 79:703–761, 1999.

    CAS  PubMed  Google Scholar 

  34. Miosge, N. The ultrastructural composition of basement membranes in vivo. Histol. Histopathol. 16:1239–1248, 2001.

    CAS  PubMed  Google Scholar 

  35. Nicolazzo, J. A., S. A. Charman, and W. N. Charman. Methods to assess drug permeability across the blood-brain barrier. J. Pharm. Pharmacol. 58:281–293, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Omidi, Y., L. Campbell, J. Barar, D. Connell, S. Akhtar, and M. Gumbleton. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res. 990:95–112, 2003.

    Article  CAS  PubMed  Google Scholar 

  37. Pardridge, W. M. Blood-brain barrier biology and methodology. J. Neurovirol. 5:556–569, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Poller, B., H. Gutmann, S. Krahenbuhl, B. Weksler, I. Romero, P. O. Couraud, G. Tuffin, J. Drewe, and J. Huwyler. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J. Neurochem. 107:1358–1368, 2008.

    Article  CAS  PubMed  Google Scholar 

  39. Sahagun, G., S. A. Moore, and M. N. Hart. Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am. J. Physiol. 259:H162–166, 1990.

    CAS  PubMed  Google Scholar 

  40. Salvetti, F., P. Cecchetti, D. Janigro, A. Lucacchini, L. Benzi, and C. Martini. Insulin permeability across an in vitro dynamic model of endothelium. Pharm. Res. 19:445–450, 2002.

    Article  CAS  PubMed  Google Scholar 

  41. Santaguida, S., D. Janigro, M. Hossain, E. Oby, E. Rapp, and L. Cucullo. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res. 1109:1–13, 2006.

    Article  CAS  PubMed  Google Scholar 

  42. Shi, Z. D., X. Y. Ji, D. E. Berardi, H. Qazi, and J. M. Tarbell. Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism. Am. J. Physiol. Heart Circ. Physiol.. 298:H127–H135, 2010.

    Article  CAS  PubMed  Google Scholar 

  43. Soga, N., J. O. Connolly, M. Chellaiah, J. Kawamura, and K. A. Hruska. Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun. Adhes. 8:1–13, 2001.

    Article  CAS  PubMed  Google Scholar 

  44. Sugaya, R., B. A. Wolf, and R. Kita. Thermal diffusion of dextran in aqueous solutions in the absence and the presence of urea. Biomacromolecules 7:435–440, 2006.

    Article  CAS  PubMed  Google Scholar 

  45. Thompson, S. E., J. Cavitt, and K. L. Audus. Leucine-enkephalin effects on paracellular and transcellular permeation pathways across brain microvessel endothelial-cell monolayers. J. Cardiovasc. Pharmacol. 24:818–825, 1994.

    Article  CAS  PubMed  Google Scholar 

  46. Tyagi, N., K. S. Moshal, U. Sen, T. P. Vacek, M. Kumar, W. M. Hughes, Jr, S. Kundu, and S. C. Tyagi. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signal. 11:25–33, 2009.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, H., S. Y. Yan, H. Chai, G. M. Riha, M. Li, Q. Z. Yao, and C. Y. Chen. Shear stress induces endothelial transdifferentiation from mouse smooth muscle cells. Biochem. Biophys. Res. Commun. 346:860–865, 2006.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, R. S., S. Yeh, L. M. Chen, H. Y. Lin, C. X. Zhang, J. Ni, C. C. Wu, P. A. di Sant’Agnese, K. L. DeMesy-Bentley, C. R. Tzeng, and C. S. Chang. Androgen receptor in sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology 147:5624–5633, 2006.

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto, K., T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol. 288:H1915–H1924, 2005.

    Article  CAS  PubMed  Google Scholar 

  50. Yoder, E. J. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line. Glia 38:137–145, 2002.

    Article  PubMed  Google Scholar 

  51. Yuan, W., G. Li, and B. M. Fu. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann. Biomed. Eng. 2010 Jan 20. Epub ahead of print.PMID: 20087768.

  52. Yuan, W., Y. Lv, M. Zeng, and B. M. Fu. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc. Res. 77:166–173, 2009.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y., C. S. W. Li, Y. Y. Ye, K. Johnson, J. Poe, S. Johnson, W. Bobrowski, R. Garrido, and C. Madhu. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab. Dispos. 34:1935–1943, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Andrew Grove Foundation, the National Science Foundation CBET-0133775 and CBET-0754158, PSC-CUNY research award of the City University of New York, and the National Institutes of Health grant HL57093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingmei M. Fu.

Additional information

Associate Editor Gerald Saidel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Simon, M.J., Cancel, L.M. et al. Permeability of Endothelial and Astrocyte Cocultures: In Vitro Blood–Brain Barrier Models for Drug Delivery Studies. Ann Biomed Eng 38, 2499–2511 (2010). https://doi.org/10.1007/s10439-010-0023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0023-5

Keywords

Navigation