Skip to main content
Log in

High-resolution Mapping of In Vivo Gastrointestinal Slow Wave Activity Using Flexible Printed Circuit Board Electrodes: Methodology and Validation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. http://www.biosemi.com.

  2. http://www.smoothmap.org.

  3. Behm B and Stollman N. Postoperative ileus: etiologies and interventions. Clin Gastroenterol Hepatol 1: 71–80, 2003. doi:10.1053/cgh.2003.50012

    Article  PubMed  Google Scholar 

  4. Bradshaw LA, Irimia A, Sims JA, Gallucci MR, Palmer PL, and Richards WO. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterology & Motility 18: 619–631, 2006. doi:10.1111/j.1365-2982.2006.00794.x

    Article  PubMed  CAS  Google Scholar 

  5. Buist ML, Cheng LK, Yassi R, Bradshaw LA, Richards WO, and Pullan AJ. An anatomical model of the gastric system for producing bioelectric and biomagnetic fields. Physiol Meas 25: 849–861, 2004. doi:10.1088/0967-3334/25/4/006

    Article  PubMed  CAS  Google Scholar 

  6. Chen CL, Lin HH, Huang LC, Huang SC, and Liu TT. Electrogastrography differentiates reflux disease with or without dyspeptic symptoms. Dig Dis Sci 49: 715–719, 2004. doi:10.1023/B:DDAS.0000030079.20501.62

    Article  PubMed  Google Scholar 

  7. Chen JD, Lin Z, Pan J, and McCallum RW. Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis. Dig Dis Sci 41: 1538–1545, 1996. doi:10.1007/BF02087897

    Article  PubMed  CAS  Google Scholar 

  8. Cheng LK, Buist ML, and Pullan AJ. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields. Conf Proc IEEE Eng Med Biol Soc 1: 3158–3161, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng, L. K., G. O’Grady, P. Du, J. U. Egbuji, J. A. Windsor, and A. J. Pullan. Gastrointestinal system. Wiley Interdiscip. Rev.: Syst. Biol. Med., 2009, in press. doi:10.1002/wnan.019.

  10. Chou CC, Zhou S, Tan AY, Hayashi H, Nihei M, and Chen PS. High-density mapping of pulmonary veins and left atrium during ibutilide administration in a canine model ofsustained atrial fibrillation. Am J Physiol Heart Circ Physiol 289: H2704–2713, 2005. doi:10.1152/ajpheart.00537.2005

    Article  PubMed  CAS  Google Scholar 

  11. Christensen J, Schedl HP, and Clifton JA. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with variety of diseases. Gastroenterology 50: 309–315, 1966.

    PubMed  CAS  Google Scholar 

  12. Code CF and Szurszewski JH. The effect of duodenal and mid small bowel transection on the frequency gradient of the pacesetter potential in the canine small intestine. J Physiol 207: 281–289, 1970.

    PubMed  CAS  Google Scholar 

  13. Cucchiara S, Franzese A, Salvia G, Alfonsi L, Iula VD, Montisci A, and Moreira FL. Gastric emptying delay and gastric electrical derangement in IDDM. Diabetes Care 21: 438–443, 1998. doi:10.2337/diacare.21.3.438

    Article  PubMed  CAS  Google Scholar 

  14. Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterology & Motility 20: 54–63, 2008. doi:10.1111/j.1365-2982.2008.01109.x

    Article  PubMed  Google Scholar 

  15. Hinder RA and Kelly KA. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 133: 29–33, 1977. doi:10.1016/0002-9610(77)90187-8

    Article  PubMed  CAS  Google Scholar 

  16. Hocking MP, Vogel SB, and Sninsky CA. Human gastric myoelectric activity and gastric emptying following gastric surgery and with pacing. Gastroenterology 103: 1811–1816, 1992.

    PubMed  CAS  Google Scholar 

  17. Jalife J. Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14: 776–780, 2003.

    PubMed  Google Scholar 

  18. Komuro R, Cheng LK, and Pullan AJ. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity. Ann Biomed Eng 36: 1049–1059, 2008. doi:10.1007/s10439-008-9480-5

    Article  PubMed  Google Scholar 

  19. Konings KT, Kirchhof CJ, Smeets JR, Wellens HJ, Penn OC, and Allessie MA. High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89: 1665–1680, 1994.

    PubMed  CAS  Google Scholar 

  20. Lammers WJ and Stephen B. Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol 93: 334–346, 2008. doi:10.1113/expphysiol.2007.039180

    Article  PubMed  Google Scholar 

  21. Lammers WJ, Stephen B, Arafat K, and Manefield GW. High resolution electrical mapping in the gastrointestinal system: initial results. Neurogastroenterol Motil 8: 207–216, 1996.

    PubMed  CAS  Google Scholar 

  22. Lammers WJ, Ver Donck L, Schuurkes JA, and Stephen B. Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can J Physiol Pharmacol 83: 1031–1043, 2005. doi:10.1139/y05-084

    Article  PubMed  CAS  Google Scholar 

  23. Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611, 2008.

    Google Scholar 

  24. Levanon D and Chen JZ. Electrogastrography: its role in managing gastric disorders. J Pediatr Gastroenterol Nutr 27: 431–443, 1998. doi:10.1097/00005176-199810000-00014

    Article  PubMed  CAS  Google Scholar 

  25. Lewis S and McIndoe AK. Cleaning, disinfection and sterilization of equipment. Anaesthesia and Intensive Care Medicine 5: 360–363, 2004. doi:10.1383/anes.5.11.360.53403

    Article  Google Scholar 

  26. Lin X and Chen JZ. Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography. Am J Physiol Gastrointest Liver Physiol 280: G1370–1375, 2001.

    PubMed  CAS  Google Scholar 

  27. McNearney T, Lin X, Shrestha J, Lisse J, and Chen JD. Characterization of gastric myoelectrical rhythms in patients with systemic sclerosis using multichannel surface electrogastrography. Dig Dis Sci 47: 690–698, 2002. doi:10.1023/A:1014759109982

    Article  PubMed  Google Scholar 

  28. Nash MP, Mourad A, Clayton RH, Sutton PM, Bradley CP, Hayward M, Paterson DJ, and Taggart P. Evidence for multiple mechanisms in human ventricular fibrillation. Circulation 114: 536–542, 2006. doi:10.1161/CIRCULATIONAHA.105.602870

    Article  PubMed  Google Scholar 

  29. Ordog T, Redelman D, Horvath VJ, Miller LJ, Horowitz B, and Sanders KM. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A 62: 139–149, 2004. doi:10.1002/cyto.a.20078

    Article  PubMed  CAS  Google Scholar 

  30. Shenasa M, Borggrefe M, and Breithardt G. Cardiac Mapping. New York: Futura Press, 2003.

    Google Scholar 

  31. Nakayama, S., K. Shimono, H.-N. Liu, H. Jiko, N. Katayama, T. Tomita, and K. Goto. Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study. J. Physiol. 576:727–738, 2006. doi:10.1113/jphysiol.2006.118893

    Google Scholar 

  32. Sih HJ and Berbari EJ. Chapter 3: Methodology of Cardiac Mapping. In Cardiac Mapping. New York: Futura Press, 2003.

    Google Scholar 

  33. Turnbull GK, Ritcey SP, Stroink G, and van Leeuwen P. Spatial and temporal variations in the magnetic fields produced by human gastrointestinal activity Medical and Biological Engineering and Computing 7: 549–554, 1999. doi:10.1007/BF02513347

    Article  Google Scholar 

  34. Vittal H, Farrugia G, Gomez G, and Pasricha PJ. Mechanisms of Disease: the pathological basis of gastroparesis—a review of experimental and clinical studies. Nature Clinical Practice Gastroenterology & Hepatology 4: 336–346, 2007. doi:10.1038/ncpgasthep0838

    Article  PubMed  CAS  Google Scholar 

  35. Yang, C., Z. Fang, X. Wu, A. Lou, and J. Lu. Dynamic 3D epicardial mapping of whole-atrium. In: World Congress on Medical Physics and Biomedical Engineering. Berlin, Heidelberg: Springer, 2007, pp. 894–897.

  36. Zhou S, Chang CM, Wu TJ, Miyauchi Y, Okuyama Y, Park AM, Hamabe A, Omichi C, Hayashi H, Brodsky LA, Mandel WJ, Ting CT, Fishbein MC, Karagueuzian HS, and Chen PS. Nonreentrant focal activations in pulmonary veins in canine model of sustained atrial fibrillation. Am J Physiol Heart Circ Physiol 283: H1244–1252, 2002.

    PubMed  CAS  Google Scholar 

  37. Zhou, T., W. Lu, C. Yang, and Z. Fang. A visual expression to show epicardial electrical activity comprehensively. In: Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on 16–18 May 2008, pp. 808–811.

Download references

Acknowledgment

This work is partially supported by Grants from the NIH (R01 DK64775), NZ Society of Gastroenterology, the NZ Health Research Council and the Auckland Medical Research Foundation. We thank Linley Nisbett for her assistance with the validation studies in this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, P., O’Grady, G., Egbuji, J.U. et al. High-resolution Mapping of In Vivo Gastrointestinal Slow Wave Activity Using Flexible Printed Circuit Board Electrodes: Methodology and Validation. Ann Biomed Eng 37, 839–846 (2009). https://doi.org/10.1007/s10439-009-9654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9654-9

Keywords

Navigation