Skip to main content

Advertisement

Log in

Hemodynamic Energy Dissipation in the Cardiovascular System: Generalized Theoretical Analysis on Disease States

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Background We present a fundamental theoretical framework for analysis of energy dissipation in any component of the circulatory system and formulate the full energy budget for both venous and arterial circulations. New indices allowing disease-specific subject-to-subject comparisons and disease-to-disease hemodynamic evaluation (quantifying the hemodynamic severity of one vascular disease type to the other) are presented based on this formalism. Methods and Results Dimensional analysis of energy dissipation rate with respect to the human circulation shows that the rate of energy dissipation is inversely proportional to the square of the patient body surface area and directly proportional to the cube of cardiac output. This result verified the established formulae for energy loss in aortic stenosis that was solely derived through empirical clinical experience. Three new indices are introduced to evaluate more complex disease states: (1) circulation energy dissipation index (CEDI), (2) aortic valve energy dissipation index (AV-EDI), and (3) total cavopulmonary connection energy dissipation index (TCPC-EDI). CEDI is based on the full energy budget of the circulation and is the proper measure of the work performed by the ventricle relative to the net energy spent in overcoming frictional forces. It is shown to be 4.01 ± 0.16 for healthy individuals and above 7.0 for patients with severe aortic stenosis. Application of CEDI index on single-ventricle venous physiology reveals that the surgically created Fontan circulation, which is indeed palliative, progressively degrades in hemodynamic efficiency with growth (p < 0.001), with the net dissipation in a typical Fontan patient (Body surface area = 1.0 m2) being equivalent to that of an average case of severe aortic stenosis. AV-EDI is shown to be the proper index to gauge the hemodynamic severity of stenosed aortic valves as it accurately reflects energy loss. It is about 0.28 ± 0.12 for healthy human valves. Moderate aortic stenosis has an AV-EDI one order of magnitude higher while clinically severe aortic stenosis cases always had magnitudes above 3.0. TCPC-EDI represents the efficiency of the TCPC connection and is shown to be negatively correlated to the size of a typical “bottle-neck” region (pulmonary artery) in the surgical TCPC pathway (p < 0.05). Conclusions Energy dissipation in the human circulation has been analyzed theoretically to derive the proper scaling (indexing) factor. CEDI, AV-EDI, and TCPC-EDI are proper measures of the dissipative characteristics of the circulatory system, aortic valve, and the Fontan connection, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Berger DS, Li JKJ, Noordergraaf A. Arterial Wave-Propagation Phenomena, Ventricular Work, and Power Dissipation. Annals of Biomedical Engineering. 1995;23(6):804–811. doi:10.1007/BF02584479

    Article  PubMed  CAS  Google Scholar 

  2. Blick EF, Stein PD. Work of Heart—General Thermodynamics Analysis. Journal of Biomechanics. 1977;10(9):589–595. doi:10.1016/0021-9290(77)90039-2

    Article  PubMed  CAS  Google Scholar 

  3. Buckingham E. On physically similar systems, illustrations of the use of dimensional equations. Physical Review. 1914;4(4):345–376. doi:10.1103/PhysRev.4.345

    Article  Google Scholar 

  4. Burwash LG, Thomas DD, Sadahiro M, Pearlman AS, Verrier ED, Thomas R, Kraft CD, Otto CM. Dependence of Gorlin Formula and Continuity Equation Valve Areas on Transvalvular Volume Flow-Rate in Valvular Aortic-Stenosis. Circulation. 1994;89(2):827–835.

    PubMed  CAS  Google Scholar 

  5. Carabello BA. Aortic stenosis - Two steps forward, one step back. Circulation. 2007;115(22):2799–2800. doi:10.1161/CIRCULATIONAHA.107.705848

    Article  PubMed  Google Scholar 

  6. Caro CG. Arterial fluid mechanics and artherogenesis. Recent Advances in Cardiovascular Disease. 1981;II:6–11.

    Google Scholar 

  7. Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. American Journal of Neuroradiology. 2005;26(10):2550–2559.

    PubMed  Google Scholar 

  8. de Zelicourt D, Pekkan K, Kitajima H, Frakes D, Yoganathan AP. Single-step stereolithography of complex anatomical models for optical flow measurements. Journal of Biomechanical Engineering-Transactions of the ASME. 2005;127(1):204–207. doi:10.1115/1.1835367

    Article  Google Scholar 

  9. de Zelicourt DA, Pekkan K, Wills L, Kanter K, Forbess J, Sharma S, Fogel M, Yoganathan AP. In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Annals of Thoracic Surgery. 2005;79(6):2094–2102. doi:10.1016/j.athoracsur.2004.12.052

    Article  PubMed  Google Scholar 

  10. Ensley AE, Lynch P, Chatzimavroudis GP, Lucas C, Sharma S, Yoganathan AP. Toward designing the optimal total cavopulmonary connection: An in vitro study. Annals of Thoracic Surgery. 1999;68(4):1384–1390. doi:10.1016/S0003-4975(99)00560-3

    Article  PubMed  CAS  Google Scholar 

  11. Fontan F, Baudet E. Surgical Repair of Tricuspid Atresia. Thorax. 1971;26(3):240–248.

    Article  PubMed  CAS  Google Scholar 

  12. Fontan F, Kirklin JW, Fernandez G, Costa F, Naftel DC, Tritto F, Blackstone EH. Outcome after a Perfect Fontan Operation. Circulation. 1990;81(5):1520-1536.

    PubMed  CAS  Google Scholar 

  13. Garcia D, Pibarot P, Dumesnil JG, Sakr F, Durand LG. Assessment of aortic valve stenosis severity - A new index based on the energy loss concept. Circulation. 2000;101(7):765–771.

    PubMed  CAS  Google Scholar 

  14. Giddens DP, Zarins CK, Glagov S. The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis. Journal of Biomechanical Engineering-Transactions of the Asme. 1993;115(4):588–594. doi:10.1115/1.2895545

    Article  CAS  Google Scholar 

  15. Giroud JM, Jacobs JP. Fontan’s operation: evolution from a procedure to a process. Cardiology in the Young. 2006;16:67–71. doi:10.1017/S1047951105002350

    Article  PubMed  Google Scholar 

  16. Gorlin R, Gorlin SG. Hydraulic formula for calculation of area of stenotic mitral valve, other valves and central circulatory shunts. American Heart Journal. 1951;41(1):1–29. doi:10.1016/0002-8703(51)90002-6

    Article  PubMed  CAS  Google Scholar 

  17. Gould SJ. Allometry and Size in Ontogeny and Phylogeny. Biological Reviews of the Cambridge Philosophical Society. 1966;41(4):587-&. doi:10.1111/j.1469–185X.1966.tb01624.x

    Article  PubMed  CAS  Google Scholar 

  18. Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation. 2007;115(22):2856–2864. doi:10.1161/CIRCULATIONAHA.106.668681

    Article  PubMed  Google Scholar 

  19. Heinrich RS, Fontaine AA, Grimes RY, Sidhaye A, Yang S, Moore KE, Levine RA, Yoganathan AP. Experimental analysis of fluid mechanical energy losses in aortic valve stenosis: Importance of pressure recovery. Annals of Biomedical Engineering. 1996;24(6):685–694. doi:10.1007/BF02684181

    Article  PubMed  CAS  Google Scholar 

  20. Huddleston CB. The failing Fontan: options for surgical therapy. Pediatric Cardiology. 2007;28(6):472–476. doi:10.1007/s00246-007-9008-z

    Article  PubMed  CAS  Google Scholar 

  21. Huxley JS. Problems of Relative Growth. London: Methuen & Co., Ltd.; 1932.

    Google Scholar 

  22. Kameyama T, Asanoi H, Ishizaka S, Yamanishi K, Fujita M, Sasayama S. Energy-Conversion Efficiency in Human Left-Ventricle. Circulation. 1992;85(3):988–996.

    PubMed  CAS  Google Scholar 

  23. Katajima, H. D. In Vitro Fluid Dynamics of Stereolithographic Single Ventricle Congenital Heart Defects from In Vivo Magnatic Resonance Imaging [PhD], Atlanta: School of Biomedical Engineering, Georgia Institute of Technology, 2007.

  24. Khairy P, Poirier N, Mercier LA. Univentricular heart. Circulation. 2007;115(6):800–812. doi:10.1161/CIRCULATIONAHA.105.592378

    Article  PubMed  Google Scholar 

  25. Levine RA, Jimoh A, Cape E.G, McMillan S, Yoganathan AP, Weyman AE. Pressure Recovery Distal to a Stenosis - Potential Cause of Gradient Overestimation by Doppler Echocardiography. Journal of the American College of Cardiology. 1989;13(3):706–715.

    Article  PubMed  CAS  Google Scholar 

  26. Liu HD, Narusawa U. Flow-induced endothelial surface reorganization and minimization of entropy generation rate. Journal of Biomechanical Engineering-Transactions of the Asme. 2004;126(3):346–350. doi:10.1115/1.1762895

    Article  Google Scholar 

  27. Nerem RM. Vascular Fluid-Mechanics, the Arterial-Wall, and Atherosclerosis. Journal of Biomechanical Engineering-Transactions of the Asme. 1992;114(3):274–282. doi:10.1115/1.2891384

    Article  CAS  Google Scholar 

  28. Painter, P., P. Eden, and H.-U. Bengtsson. Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor. Biol. Med. Model. 3:31, 2006.

    Google Scholar 

  29. Pedley TJ. Mathematical modelling of arterial fluid dynamics. Journal of Engineering Mathematics. 2003;47(3–4):419–444. doi:10.1023/B:ENGI.0000007978.33352.59

    Article  Google Scholar 

  30. Pekkan K, De Zelicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP. Physics-driven CFD modeling of complex anatomical cardiovascular flows - A TCPC case study. Annals of Biomedical Engineering. 2005;33(3):284–300. doi:10.1007/s10439-005-1731-0

    Article  PubMed  Google Scholar 

  31. Pekkan K, Kitajima HD, de Zelicourt D, Forbess JM, Parks WJ, Fogel MA, Sharma S, Kanter KR, Frakes D, Yoganathan AP. Total cavopulmonary connection flow with functional left pulmonary artery stenosis - Angioplasty and fenestration in vitro. Circulation. 2005;112(21):3264–3271. doi:10.1161/CIRCULATIONAHA.104.530931

    Article  PubMed  Google Scholar 

  32. Peskin CS, McQueen DM. Cardiac Fluid-Dynamics. Critical Reviews in Biomedical Engineering. 1992;20(5–6):451-&.

    PubMed  CAS  Google Scholar 

  33. Senzaki H, Masutani S, Kobayashi J, Kobayashi T, Sasaki N, Asano H, Kyo S, Yokote Y, Ishizawa A. Ventricular afterload and ventricular work in Fontan circulation - Comparison with normal two-ventricle circulation and single-ventricle circulation with Blalock-Taussig shunts. Circulation. 2002;105(24):2885–2892. doi:10.1161/01.CIR.0000018621.96210.72

    Article  PubMed  Google Scholar 

  34. Sluysmans T, Colan SD. Theoretical and empirical derivation of cardiovascular allometric relationships in children. Journal of Applied Physiology. 2005;99(2):445–457. doi:10.1152/japplphysiol.01144.2004

    Article  PubMed  Google Scholar 

  35. Soerensen DD, Pekkan K, de Zelicourt D, Sharma S, Kanter K, Fogel M, Yoganathan AP. Introduction of a new optimized total cavopulmonary connection. Annals of Thoracic Surgery. 2007;83(6):2182–2190. doi:10.1016/j.athoracsur.2006.12.079

    Article  PubMed  Google Scholar 

  36. Steinman DA. Image-based computational fluid dynamics modeling in realistic arterial geometries. Annals of Biomedical Engineering. 2002;30(4):483–497. doi:10.1114/1.1467679

    Article  PubMed  Google Scholar 

  37. Sundareswaran KS, Kanter KR, Kitajima HD, Krishnankutty R, Sabatier JF, Parks WJ, Sharma S, Yoganathan AP, Fogel M. Impaired power output and cardiac index with hypoplastic left heart syndrome: A magnetic resonance imaging study. Annals of Thoracic Surgery. 2006;82(4):1267–1277. doi:10.1016/j.athoracsur.2006.05.020

    Article  PubMed  Google Scholar 

  38. Sundareswaran, K. S., K. Pekkan, L. P. Dasi, H. D. Kitajima, K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Significant impact of the total cavopulmonary connection resistance on cardiac output and exercise performance in single ventricles. Circulation 116(16_MeetingAbstracts):II_479-c, 2007.

    Google Scholar 

  39. Tang BT, Cheng CP, Draney MT, Wilson NM, Tsao PS, Herfkens RJ, Taylor CA. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. American Journal of Physiology-Heart and Circulatory Physiology. 2006;291(2):H668-H676. doi:10.1152/ajpheart.01301.2005

    Article  PubMed  CAS  Google Scholar 

  40. Wang C, Pekkan K, de Zelicourt D, Horner M, Parihar A, Kulkarni A, Yoganathan AP. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Annals of Biomedical Engineering. 2007;35(11):1840–1856. doi:10.1007/s10439-007-9356-0

    Article  PubMed  Google Scholar 

  41. Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single-ventricle patients after the Fontan - Insights from computational fluid dynamics. Circulation. 2007;116(11):I165-I171. doi:10.1161/CIRCULATIONAHA.106.680827

    Article  PubMed  Google Scholar 

  42. Wood NB. Aspects of fluid dynamics applied to the larger arteries. Journal of Theoretical Biology. 1999;199(2):137–161. doi:10.1006/jtbi.1999.0953

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the Bioengineering Research Partnership (BRP) grant from NIH (HL67622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Appendix

Appendix

Dimensional Analysis

Re-writing Eq. (1) in the general form:

$$ \psi \left( {\varepsilon ,Q,\rho ,\nu ,BSA,S} \right) = 0 $$
(1)

With each of the variable with the following dimensions:

$$ \begin{gathered} \left[ \varepsilon \right] = ML^{2} T^{ - 3} \hfill \\ \left[ Q \right] = M^{0} L^{3} T^{ - 1} \hfill \\ \left[ \rho \right] = ML^{ - 3} T^{0} \hfill \\ \left[ \nu \right] = M^{0} L^{2} T^{ - 1} \hfill \\ \left[ {BSA} \right] = M^{0} L^{2} T^{0} \hfill \\ \left[ S \right] = M^{0} L^{0} T^{0} \hfill \\ \end{gathered} $$
(A1)

According to the Buckingham π theorem,3 any relationship between n variables spanning d dimensions may be reduced to an equivalent relationship between k = n − d dimensionless groups π1, π2,…, π k . Equation (1) has six variables spanning three dimensions (i.e. mass, [M], length, [L], and time, [T], dimensions). Therefore, it can be expressed as a relationship between 6 − 3 = 3 dimensionless variables given as:

$$ \varphi \left( {\Uppi_{1} ,\Uppi_{2} ,\Uppi_{3} } \right) = 0 $$
(A2)

Choosing Q, ρ, and BSA as our fundamental variables that span M, L, and T, we can obtain a specific form for Eq. (A2) by solving the following equations:

$$ \left[ {Q^{{a_{1} }} \rho^{{b_{1} }} BSA^{{c_{1} }} \nu } \right] = \left[ {M^{0} L^{0} T^{0} } \right] $$
(A3)
$$ \left[ {Q^{{a_{2} }} \rho^{{b_{2} }} BSA^{{c_{2} }} \varepsilon } \right] = \left[ {M^{0} L^{0} T^{0} } \right] $$
(A4)
$$ \left[ {Q^{{a_{3} }} \rho^{{b_{3} }} BSA^{{c_{3} }} S} \right] = \left[ {M^{0} L^{0} T^{0} } \right] $$
(A5)

Solving for Eq. (A3) for a 1, b 1, c 1:

$$ 3a_{1} - 3b_{1} + 2c_{1} + 2 = 0 $$
(A6)
$$ - a_{1} - 1 = 0 $$
(A7)
$$ b_{1} = 0 $$
(A8)

Gives: \( a_{1} = - 1,b_{1} = 0,c_{1} = \frac{1}{2} \)

Solving for Eq. (A4) for a 2, b 2, c 2

$$ 3a_{2} - 3b_{2} + 2c_{2} + 2 = 0 $$
(A9)
$$ - a_{2} - 3 = 0 $$
(A10)
$$ b_{2} + 1 = 0 $$
(A11)

Gives: a 2 = −3, b 2 = −1, c 2 = 2

And finally solving Eq. (A5) for a 3, b 3, c 3 gives a 3 = 0, b 3 = 0, c 3 = 0, as S by definition is dimensionless.

Therefore the specific forms of the three dimensionless groups are::

$$ \Uppi_{1} = \frac{\nu }{{QBSA^{ - 1/2} }} $$
(A12)
$$ \Uppi_{2} = \frac{\varepsilon }{{\rho \frac{{Q^{3} }}{{BSA^{2} }}}} $$
(A13)
$$ \Uppi_{3} = S $$
(A14)

Examination of Π1 indicates that it is a form of a special Reynolds number, \( Re = \frac{{Q \times BSA^{ - 1/2} }}{\upsilon }, \) where the characteristic velocity scale is \( Q/BSA, \) and the characteristic length scale is \( \sqrt {BSA}. \) Reynolds number is always an important dimensionless group for any fluid flow problem dictating the dependence on the fluid flow regime (i.e. laminar, to turbulence).

Examination of Π2 indicates that the energy dissipation rate has been non-dimensionalized by a “body-level” kinetic energy scale given by \( \rho \frac{{Q^{3} }}{{BSA^{2} }} \).

The shape variable, S, is by definition dimensionless and thus is directly third dimensionless group without need for non-dimensionalization.

Solving for Π2 in Eq. (A2) and using results (A12)–(A14) finally gives:

$$ \frac{\varepsilon }{{\rho \frac{{Q^{3} }}{{BSA^{2} }}}} = f(Re,S) $$
(A3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasi, L.P., Pekkan, K., de Zelicourt, D. et al. Hemodynamic Energy Dissipation in the Cardiovascular System: Generalized Theoretical Analysis on Disease States. Ann Biomed Eng 37, 661–673 (2009). https://doi.org/10.1007/s10439-009-9650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9650-0

Keywords

Navigation