Skip to main content

Advertisement

Log in

Hydrostatic Pressure Differentially Regulates Outer and Inner Annulus Fibrosus Cell Matrix Production in 3D Scaffolds

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical stimulation may be used to enhance the development of engineered constructs for the replacement of load bearing tissues, such as the intervertebral disc. This study examined the effects of dynamic hydrostatic pressure (HP) on outer and inner annulus (OA, IA) fibrosus cells seeded on fibrous poly(glycolic acid)-poly(l-lactic acid) scaffolds. Constructs were pressurized (5 MPa, 0.5 Hz) for 4 h/day from day 3 to day 14 of culture and analyzed using ELISAs and immunohistochemistry (IHC) to assess extracellular matrix (ECM) production. Both cell types were viable, with OA cells exhibiting more infiltration into the scaffold, which was enhanced by HP. ELISA analyses revealed that HP had no effect on type I collagen production while a significant increase in type II collagen (COL II) was measured in pressurized OA constructs compared to day 14 unloaded controls. Both OA and IA dynamically loaded scaffolds exhibited more uniform COL II elaboration as shown by IHC analyses, which was most pronounced in OA-seeded scaffolds. Overall, HP resulted in enhanced ECM elaboration and organization by OA-seeded constructs, while IA-seeded scaffolds were less responsive. As such, hydrostatic pressurization may be beneficial in annulus fibrosus tissue engineering when applied in concert with an appropriate cell source and scaffold material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. An H., S. D. Boden, J. Kang, H. S. Sandhu, W. Abdu, J. Weinstein Summary statement: emerging techniques for treatment of degenerative lumbar disc disease. Spine 28 (15 Suppl): S24–S25, 2003

    Article  PubMed  Google Scholar 

  2. Buckwalter J. A., S. D. Boden, D. R. Eyre, V. C. Mow, M. Weidenbaum Intervertebral disk aging, degeneration, and herniation. In: J. A. Buckwalter, T. A. Einhorn, S. R. Simon (eds) Orthopaedic Basic Science, Rosemont, IL: American Academy of Orthopaedic Surgeons, 2000, pp. 557–566

    Google Scholar 

  3. Chou A. I., A. Bansal, G. J. Miller, S. B. Nicoll The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells. Spine 31: 1875–1881, 2006

    Article  PubMed  Google Scholar 

  4. Chou A. I., A. T. Reza, C. S. Choug, S. B. Nicoll Differential collagen expression by outer and inner annulus fibrosus and nucleus pulposus cells seeded in 3-d polymer scaffolds. Trans. Orthop. Res. Soc. 31: 1243, 2006

    Google Scholar 

  5. Chow D. H., K. D. Luk, J. H. Evans, J. C. Leong Effects of short anterior lumbar interbody fusion on biomechanics of neighbouring unfused segments. Spine 21: 549–555, 1996

    Article  PubMed  CAS  Google Scholar 

  6. Farndale R. W., C. A. Sayers, A. J. Barrett A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Conn. Tiss. Res. 9: 247–248, 1982

    Article  CAS  Google Scholar 

  7. Goupille P., M. I. Jayson, J. P. Valat, A. J. Freemont Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23: 1612–1626, 1998

    Article  PubMed  CAS  Google Scholar 

  8. Gruber H. E., J. E. Carl Fisher, B. Desai, A. A. Stasky, G. Hoelscher, E. N. Hanley Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-β1. Exp. Cell Res. 235: 13–21, 1997

    Article  PubMed  CAS  Google Scholar 

  9. Hall, S. J. In: Basic Biomechanics, Boston: McGraw-Hill, 2003, pp. 276–282

  10. Handa T., H. Ishihara, H. Ohshima, R. Osada, H. Tsuji, K. I. Obata Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22: 1085–1091, 1997

    Article  PubMed  CAS  Google Scholar 

  11. Hutton W. C., W. A. Elmer, S. D. Boden, S. Hyon, Y. Toribatake, K. Tomita, G. A. Hair The effect of hydrostatic pressure on intervertebral disc metabolism. Spine 24: 1507–1515, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Hutton W. C., W. A. Elmer, L. M. Bryce, E. E. Kozlowsk, S. D. Boden, M. Kozlowski Do the intervertebral disc cells respond to different levels of hydrostatic pressure? Clin. Biomech. 16: 728–734, 2001

    Article  CAS  Google Scholar 

  13. Ishihara H., D. S. McNally, J. P. G. Urban, A. C. Hall Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J. Appl. Physiol. 80: 839–846, 1996

    PubMed  CAS  Google Scholar 

  14. Kasra M., V. K. Goel, J. D. Martin, S.-T. Wang, W. Choi, J. A. Buckwalter Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J. Orthop. Res. 21: 597–603, 2003

    Article  PubMed  Google Scholar 

  15. Kasra M., W. D. Merryman, K. N. Loveless, V. K. Goel, J. D. Martin, J. A. Buckwalter Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J. Orthop. Res. 24: 1967–1973, 2006

    Article  PubMed  Google Scholar 

  16. Lavelle W., C. Allen, E. D. Lavelle Invasive and minimally invasive surgical techniques for back pain conditions. Med. Clin. N. Am. 91: 287–298, 2007

    Article  PubMed  Google Scholar 

  17. MacLean J. J., C. R. Lee, M. Alini, J. C. Iatridis Anabolic and catabolic mrna levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J. Orthop. Res. 22: 1193–1200, 2004

    Article  PubMed  CAS  Google Scholar 

  18. Maiman D. J., S. Kumaresan, N. Yoganandan, F. A. Pintar Biomechanical effects of anterior cervical spine fusion on adjacent segments. Biomed. Mater. Eng. 9: 27–38, 1999

    PubMed  CAS  Google Scholar 

  19. McNally D. S., M. A. Adams Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17: 66–73, 1992

    Article  PubMed  CAS  Google Scholar 

  20. Miyanishi K., M. C. D. Trindade, D. P. Lindsey, G. S. Beaupré, D. R. Carter, S. B. Goodman, D. J. Schurman, R. L. Smith Effects of hydrostatic pressure and transforming growth factor-β3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 12: 1419–1428, 2006

    Article  PubMed  CAS  Google Scholar 

  21. Mizuno H., A. K. Roy, C. A. Vacanti, K. Kojima, M. Ueda, L. J. Bonassar Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 29: 1290–1297, 2004

    Article  PubMed  Google Scholar 

  22. Mizuno H., A. K. Roy, V. Zaporojan, C. A. Vacanti, M. Ueda, L. J. Bonassar Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials 27: 362–370, 2006

    Article  PubMed  CAS  Google Scholar 

  23. Nachemson A., G. Elfstrom Intravital dynamic pressure measurements in lumbar discs. A study of common movements, maneuvers and exercises. Scand. J. Rehabil. Med. Suppl. 1: 1–40, 1970

    PubMed  CAS  Google Scholar 

  24. Neidlinger-Wilke C., K. Würtz, A. Liedert, C. Schmidt, W. Börm, A. Ignatius, H.-J. Wilke, L. Claes A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. J. Neurosurg. Spine 2: 457–465, 2005

    Article  PubMed  Google Scholar 

  25. Neidlinger-Wilke C., K. Würtz, J. P. G. Urban, W. Börm, M. Arand, A. Ignatius, H.-J. Wilke, L. E. Claes Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur. Spine J. 15: 372–378, 2006

    Article  Google Scholar 

  26. Phillips F. M., J. Reuben, F. T. Wetzel Intervertebral disc degeneration adjacent to a lumbar fusion: an experimental rabbit model. J. Bone Joint Surg. Br. 84: 289–294, 2002

    Article  PubMed  CAS  Google Scholar 

  27. Roughley P. J. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29: 2691–2699, 2004

    Article  PubMed  Google Scholar 

  28. Seidel J. O., M. Pei, M. L. Gray, R. Langer, L. E. Freed, G. Vunjak-Novakovic Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology 41: 445–458, 2004

    PubMed  CAS  Google Scholar 

  29. Setton L. A., J. Chen Mechanobiology of the intervertebral disc and relevance to disc degeneration. J. Bone Joint Surg. Am. 88 (Suppl 2): 52–57, 2006

    Article  PubMed  Google Scholar 

  30. Singer V. L., L. J. Jones, S. T. Yue, R. P. Haugland Characterization of picogreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249: 228–238, 1997

    Article  PubMed  CAS  Google Scholar 

  31. Smith R. L., S. F. Rusk, B. E. Ellison, P. Wessells, K. Tsuchiya, D. R. Carter, W. E. Caler, L. J. Sandell, D. J. Schurman In vitro stimulation of articular chondrocyte mrna and extracellular matrix synthesis by hydrostatic pressure. J. Orthop. Res. 14: 53–60, 1996

    Article  PubMed  CAS  Google Scholar 

  32. Takai E., R. L. Mauck, C. T. Hung, X. E. Guo Osteocyte viability and regulation of osteoblast function in a 3d trabecular bone explant under dynamic hydrostatic pressure. J. Bone Miner. Res. 19: 1403–1410, 2004

    Article  PubMed  Google Scholar 

  33. Videman T., M. Nurminen, J. D. G. Tourp Lumbar spinal pathology in cadaveric material in relation to history of back pain, occupation and physical loading. Spine 15: 728–740, 1990

    Article  PubMed  CAS  Google Scholar 

  34. Wang J. Y., A. E. Baer, V. B. Kraus, L. A. Setton Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine 26: 1747–1751, 2001

    Article  PubMed  CAS  Google Scholar 

  35. Wenger K. H., J. A. Woods, A. Holecek, E. C. Eckstein, J. T. Robertson, K. A. Hasty Matrix remodeling expression in anulus cells subjected to increased compressive load. Spine 30: 1122–1126, 2005

    Article  PubMed  Google Scholar 

  36. Wong M., M. Siegrist, K. Goodwin Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33: 685–693, 2003

    Article  PubMed  CAS  Google Scholar 

  37. Wuertz, K., J. P. Urban, J. Klasen, A. Ignatius, H. J. Wilke, L. Claes, and C. Neidlinger-Wilke. Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. J. Orthop. Res. (in press), 2007

Download references

Acknowledgments

This work was supported by an NSF Graduate Fellowship and NIH Grants DE14228 (S. Nicoll) and EB002425 (PI: D. Elliott). The authors would also like to thank Christopher Hee and Jay Sy for their custom-written MATLAB and LabVIEW programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven B. Nicoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reza, A.T., Nicoll, S.B. Hydrostatic Pressure Differentially Regulates Outer and Inner Annulus Fibrosus Cell Matrix Production in 3D Scaffolds. Ann Biomed Eng 36, 204–213 (2008). https://doi.org/10.1007/s10439-007-9407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9407-6

Keywords

Navigation