Skip to main content
Log in

The role of the feedforward paradigm in cognitive psychology

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Feedforward control is a process adjusting behaviour in a continuative way. Feedforward takes place when an equilibrium state is disrupted and the system has to automatically retrieve the homeostatic stable state. It also occurs when a perturbation is previewed and must be eliminated in order to achieve a desired goal. According to the most general definition, a feedforward process operates by fixing the future representation of the desired state, the achieving of which stops the process. Then, feedforward works by means of the refinement determined by successive comparisons between the actual and target products. In its applications, a feedforward process is thought to be modulated by the subject’s purpose and the environmental state. Over the years, the feedforward process has assumed different connotations in several contests of cognitive psychology. An overview of the research fields in psychology that significantly progressed with the introduction of a feedforward paradigm is provided by: (a) reviewing models in which the feedforward concept plays a fundamental role in the system control; (b) examining critical experiments related to the interaction of feedforward and feedback processes; (c) evidencing practical applications for some of the presented feedforward-based architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    PubMed  CAS  Google Scholar 

  • Alexander I (2004) Emergence from brain architectures: a new cognitive science. Cogn Process 5:10–14

    Google Scholar 

  • Anderson MC, Shettleworth SJ (1977) Behavioural adaptation to fixed-interval and fixed-time food delivery in golden hamsters. J Exp Anal Behav 25:33–49

    Google Scholar 

  • Andres P (2001) Supervisory attentional system in patients with focal frontal lesions. J Clin Exp Neuropsychol 23(2):225–239

    PubMed  CAS  Google Scholar 

  • Annett J (1969) Feedback and human behaviour: the effects of knowledge of results, incentives and reinforcement on learning and performance. Penguin Books, Baltimore

    Google Scholar 

  • Argentero P, Zanaletti W, Dell’Olivo B, Majer V, Giorni G (2005) Safety training, occupational risk perception and injuries prevention. Psychol Health 20(S1):17

    Google Scholar 

  • Ashby WR (1956) An introduction to cybernetics. Chapman & Hall, London

    Google Scholar 

  • Atkinson JW (1964) An introduction to motivation. Van Nostrand, Princeton

    Google Scholar 

  • Basmajian JV (1979) Muscles alive: their functions revealed by electromyography. Williams & Wilkins, Baltimore

    Google Scholar 

  • Basso D (2005) Involvement of the prefrontal cortex in visuo-spatial planning. PhD thesis, Department of Psychology, University of Rome “La Sapienza”. http://www.padis.uniroma1.it/getfile.py?recid = 334

  • Basso D, Bisiacchi PS, Cotelli M, Farinello C (2001) Planning times during traveling salesman’s problem: differences between closed head injury and normal subjects. Brain Cogn 46(1–2):38–42

    PubMed  CAS  Google Scholar 

  • Bernard C (1859) Leçons sur les propriétés physiologiques et les altérationbs patholoqiques des liquids de l’organisme. Baillière, Paris

    Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Birbaumer N, Kubler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8(2):190–193

    PubMed  CAS  Google Scholar 

  • Björkman J (1972) Feedforward and feedback as determiners of knowledge and policy: notes on a neglected issue. Scand J Psychol 13(2):152–158

    Google Scholar 

  • Blackmore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18(18):7511–7518

    Google Scholar 

  • Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153(2):239–245

    PubMed  Google Scholar 

  • Blum NJ, Kell RS, Starr HL, Lender WL, Bradley K, Kathy L, Osborne ML, Dowrick PW (1998) Case study: audio feedforward treatment of selective mutism. J Am Acad Child Adolesc Psychiatry 37(1):40–43

    PubMed  CAS  Google Scholar 

  • Bolles RC (1988) The bathwater and everything. Behav Brain Sci 11(3):449–450

    Article  Google Scholar 

  • Bontis N, Crossan MM, Hulland J (2002) Managing an organizational learning system by aligning stocks and flows. J Manage Stud 39(4):437–469

    Google Scholar 

  • Brehmer B (1990) Strategies in real-time, dynamic decision making. In: Hogarth RH (ed) Insights in decision making. University of Chicago Press, Chicago, pp 262–279

    Google Scholar 

  • Brehmer B, Allard R (1991) Dynamic decision making: the effects of task complexity and feedback delay. In: Rasmussen J, Brehmer B, Leplat J (eds) Distributed decision making: cognitive models for cooperative work. Wiley, Chichester, pp 319–334

    Google Scholar 

  • Brosilow C, Joseph B (2002) Techniques of model-based control. Prentice-Hall, New Jersey

    Google Scholar 

  • Cannon WB (1926) Some general features of endocrine influence on metabolism. Am J Med Sci 171:1–20

    Google Scholar 

  • Cannon WB (1932) The wisdom of the body. Norton, New York

    Google Scholar 

  • Carpenter GA, Grossberg S (2003) Adaptive Resonance Theory (ART). In: Arbib MA (eds) The handbook of brain theory and neural networks. MIT Press, Cambridge, pp 79–82

    Google Scholar 

  • Carver CS, Scheier MF (1998) On the self-regulation of behavior. Cambridge University Press, New York

    Google Scholar 

  • Cazier J, Dowling K, Santanam R, St Louis R (2001) The effects of cognitive feedforward and feedback on the perceived usefulness and ease-of-use of complex models. In: Strong D, Straub D (eds) Proceedings of the seventh Americas conference on information systems (AMCIS 2001), Boston, pp 264–266

  • Chenoweth T, Dowling KL, St Louis RD (2004) Convincing DSS users that complex models are worth the effort. Decis Support Syst 37(1):71–82

    Google Scholar 

  • Cooper R, Shallice T (2000) Contention scheduling and the control of routine activities. Cogn Neuropsychol 17:297–338

    Google Scholar 

  • Crick F, Koch C (1995) Are we aware of neural activity in primary visual cortex? Nature 275:121–123

    Google Scholar 

  • Crider A, Glaros AG, Gevirtz RN (2005) Efficacy of biofeedback-based treatments for temporomandibular disorders. Appl Psychophysiol Biofeedback 30:333–345

    PubMed  Google Scholar 

  • Crossan MM, Lane HW, White RE (1999) An organisational learning framework: from intuition to institution. Acad Manage Rev 24(3):522–537

    Google Scholar 

  • Cruse H (1986) Constraints for joint angle control of the human arm. Biol Cybern 54:125–132

    Google Scholar 

  • Davidson PR, Wolpert DM (2005) Widespread access to predictive models in the motor system: a short review. J Neural Eng 2(3):S313–S319

    PubMed  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with positron emission tomography. Nature 371(6498):600–602

    PubMed  CAS  Google Scholar 

  • Domjan M, Cusato B, Villarreal R (2000) Pavlovian feed-forward mechanisms in the control of social behavior. Behav Brain Sci 23(2):235–282

    PubMed  CAS  Google Scholar 

  • Dowrick PW, Raeburn JM (1995) Self-modeling: rapid skill training for children with physical disabilities. J Dev Phys Disabil 7(1):25–37

    Google Scholar 

  • Dowrick PW, Ward KM (1997) Video feedforward in the support of a man with intellectual disability and inappropriate sexual behaviour. J Intellect Dev Disabil 22(3):147–160

    Google Scholar 

  • Dowrick PW, Kim-Rupnow WS, Power TJ (2006) Video feedforward for reading. J Spec Educ 39(4):194–207

    Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10(6):732–739

    PubMed  CAS  Google Scholar 

  • Dunn TG, Gillig SE, Ponsor SE, Weil N (1986) The learning process in biofeedback: is it feed-forward or feedback? Biofeedback Self Regul 11(2):143–156

    PubMed  CAS  Google Scholar 

  • Faanes A, Skogestad S (2004) Feedforward control under the presence of uncertainty. Eur J Control 10(1):30–46

    Google Scholar 

  • Ferretti MS, Pessa E (2006) Intrinsic uncertainty in the study of Complex Systems: the case of choice of academic career. In: Minati D, Pessa E, Abram M (eds) Systemics of emergence: research and development. Springer, Berlin Heidelberg New York, pp 417–426

    Google Scholar 

  • Flanagan JR, Wing AM (1995) The stability of precision grip force during cyclic arm movements with a hand-held load. Exp Brain Res 105(3):455–464

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Tresilian JR, Wing AM (1993) Coupling of grip force and load force during arm movements with grasped objects. Neurosci Lett 152(1–2):53–56

    PubMed  CAS  Google Scholar 

  • Fortin S, Godbout L, Braun CM (2003) Cognitive structure of executive deficits in frontally lesioned head trauma patients performing activities of daily living. Cortex 39(2):273–291

    PubMed  Google Scholar 

  • Frith CD (1992) The cognitive neuropsychology of schizophrenia. Erlbaum, Hove

    Google Scholar 

  • Frith CD, Done DJ (1989) Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. Psychol Med 19(2):359–363

    Article  PubMed  CAS  Google Scholar 

  • Frith CD, Frith U (2006) How we predict what other people are going to do. Brain Res 1079(1):36–46

    PubMed  CAS  Google Scholar 

  • Gallagher S (2004) Neurocognitive models of schizophrenia: a neurophenomenological critique. Psychopathology 37(1):8–19

    PubMed  Google Scholar 

  • Gardner M (1982) Aha! Gotcha. Paradoxes to puzzle and delight. Freeman, New York

    Google Scholar 

  • Gardner RA, Gardner BT (1988) Feedforward versus feedbackward: an ethological alternative to the law of effect. Behav Brain Sci 11(3):429–493

    Google Scholar 

  • Glaros AG, Hanson K (1990) EMG biofeedback and discriminative muscle control. Biofeedback Self Regul 15(2):135–143

    PubMed  CAS  Google Scholar 

  • Gonzalez C (2005) Decision support for real-time, dynamic decision-making tasks. Organ Behav Hum Decis Process 96(2):142–154

    Google Scholar 

  • Gordon AM, Forssberg H, Johansson RS, Westling G (1991a) Visual size cues in the programming of manipulative forces during precision grip. Exp Brain Res 83:477–482

    CAS  Google Scholar 

  • Gordon AM, Forssberg H, Johansson RS, Westling G (1991b) The integration of haptically acquired size information in the programming of precision grip. Exp Brain Res, 83:483–488

    CAS  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    PubMed  CAS  Google Scholar 

  • Grossberg S (1976) Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectors. Biol Cybern 23:121–134

    PubMed  CAS  Google Scholar 

  • Haruno M, Wolpert DM, Kawato M (2001) MOSAIC model for sensorimotor learning and control. Neural Comput 13:2201–2220

    PubMed  CAS  Google Scholar 

  • Hermsdöfer J, Novak DA, Lee A, Rost K, Timmann D, Mühlau M, Boeker H (2005) The representation of predictive force control and internal forward models; evidence from lesion studies and brain images. Cogn Process 6(1):48–58

    Google Scholar 

  • Hershberger WA (1990) Control theory and learning theory. Am Behav Sci 34(1):55–66

    Google Scholar 

  • Johansson B (2003) Feedforward control in dynamic situations. PhD thesis. Linköping Studies in Science and Technology. http://www.urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5690

  • Johansson RS (1996) Sensory control of dexterous manipulation in humans. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and brain: the neurophysiology and psychology of hand movements. Academic, San Diego, pp 381–414

    Google Scholar 

  • Johansson B, Rigas G (2004) Functional failures, time and control. In: Thissen W, Wieringa P, Pantic M, Ludema M (eds) Proceedings of the 2004 IEEE international conference on systems, man & cybernetics. Omnipress, The Netherlands, pp 266–270

  • Johansson RS, Edin BB (1993) Predictive feedforward sensory control during grasping and manipulation in man. Biomed Res 14:95–106

    Google Scholar 

  • Johansson RS, Westling G (1988) Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res 71:72–86

    PubMed  CAS  Google Scholar 

  • Jordan MI (1995) Computational aspects of motor control and motor learning. In: Heuer H, Keele SW (eds) Handbook of perception and action: motor skills. Academic, New York, pp 71–118

    Google Scholar 

  • Junker E (1960) Ueber unterschiedilisches Behalten eigener Leistungen. Kramer, Frankfurt

    Google Scholar 

  • Karniel A (2002) Three creatures named ‘forward model’. Neural Netw 15:305–307

    PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    PubMed  CAS  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188

    PubMed  Google Scholar 

  • Kowalski R (2001) Artificial intelligence and the natural world. Cogn Process 2:547–573

    Google Scholar 

  • Kursin A (2003) Neural network: input anticipation may lead to advanced adaptation properties. Lect Notes Comput Sci 2714:779–785

    Google Scholar 

  • La Croix JM (1981) The acquisition of autonomic control through biofeedback: the case against an afferent process and a two process alternative. Psychophysiology 18:573–587

    CAS  Google Scholar 

  • Lamme VA (2001) Blindsight: the role of feedforward and feedback corticocortical connections. Acta Psychol 107:209–228

    CAS  Google Scholar 

  • Lamme VA (2003) Why visual attention and awareness are different. Trends Cogn Sci 7(1):12–18

    PubMed  Google Scholar 

  • Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23(11):571–579

    PubMed  CAS  Google Scholar 

  • Laughlin CD, D’Aquili EG (1974) Biogenetic structuralism. Columbia University Press, New York

    Google Scholar 

  • Lee WA (1980) Anticipatory control of postural and task muscles during rapid arm flexion. J Mot Behav 12(3):185–196

    PubMed  CAS  Google Scholar 

  • van Leeuwen C, Raffone A (2001) Coupled map lattice models of long, short, and intermediate memory. Cogn Process 2:67–116

    Google Scholar 

  • Lerch FJ, Harter DE (2001) Cognitive support for real-time dynamic decision making. Inf Syst Res 12(1):63–82

    Google Scholar 

  • Lewin K (1935) A dynamic theory of personality. McGraw-Hill, New York

    Google Scholar 

  • Libet B, Gleason CA, Wright EW, Pearl DK (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106(3):623–642

    PubMed  Google Scholar 

  • Lyon P (2006) The biogenic approach to cognition. Cogn Process 7:11–29

    PubMed  Google Scholar 

  • Mark D, Frank A (1996) Experiential and formal models of geographic space. Environ Plann B 23:3–24

    Google Scholar 

  • Marlin T (2000) Process control, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Maturana HR (1980) Biology of cognition. In: Maturana HR, Varela FJ (eds) Autopoiesis and cognition: the realization of the living. Reidel, Dordrecht, pp 42:1–18

    Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Google Scholar 

  • McKelvie SJ (1995) Vividness of visual imagery: measurement, nature, function and dynamics. Brandon House, New York

    Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25:203–216

    PubMed  CAS  Google Scholar 

  • Miller GA, Galanter E, Pribram K (1960) Plans and the structure of behaviour. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol 41(1):49–100

    CAS  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    PubMed  CAS  Google Scholar 

  • Neisser U (1976) Cognition and reality: principles and implications of cognitive psychology. W.H. Freeman, San Francisco

    Google Scholar 

  • Neumann N, Kubler A, Kaiser J, Hinterberger T, Birbaumer N (2003) Conscious perception of brain states: mental strategies for brain–computer communication. Neuropsychologia 41(8):1028–1036

    PubMed  Google Scholar 

  • Norman DA (1988) The psychology of everyday things. Basic Books, New York

    Google Scholar 

  • Norman D, Shallice T (1986) Attention to action: willed and automatic control of behavior. In: Davidson R, Schwartz G, Shapiro D (eds) Consciousness and self regulation: advances in research and theory, vol 4. Plenum, New York, pp 1–18

  • Nowak DA, Glasauer S, Hermsdörfer J (2004) How predictive is grip force control in the complete absence of somatosensory feedback? Brain 127(1):182–192

    PubMed  Google Scholar 

  • Olivetti Belardinelli M (1974) La costruzione della realtà come problema psicologico, 1st edn. Boringhieri, Torino

    Google Scholar 

  • Olivetti Belardinelli M (1977) Comportamento motivato e processi di apprendimento: un modello sistemico per la verifica operativa. Comun Sci Psicol Gen 4:7–32

    Google Scholar 

  • Olivetti Belardinelli M (1986) La costruzione della realtà come problema psicologico, 3rd enlarged edn. Boringhieri, Torino

  • Olivetti Belardinelli M, Basso D (2001) The role of feedforward control in motor planning processes. Behav Brain Sci 24(5):896–897

    Google Scholar 

  • Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci 13:4700–4719

    PubMed  CAS  Google Scholar 

  • Ovsiankina M (1928) Die Wideraufnahme unterbrochener Handlungen. Psychol Forsch 11:302–379

    Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford

    Google Scholar 

  • Phillips LH, Wynn VE, McPherson S, Gilhooly KJ (2001) Mental planning and the Tower of London task. Q J Exp Psychol A 54:579–598

    PubMed  CAS  Google Scholar 

  • Piaget J (1929) The child’s conception of the world. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Pribram KH (1971) Languages of the brain. Experimental paradoxes and principles in neuropsychology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Ramsay DS, Seeley RJ, Bolles RC, Woods SC (1996) Ingestive homeostasis: the primacy of learning. In: Capaldi ED (ed) Why we eat what we eat. American Psychological Association, Washington, pp 11–27

    Google Scholar 

  • Rao RPN, Ballard DH (1997) Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput 9:721–763

    PubMed  CAS  Google Scholar 

  • Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nat Neurosci 2(1):79–87

    PubMed  CAS  Google Scholar 

  • Rauschecker JP, Singer W (1979) Changes in the circuitry of kitten’s visual cortex are gated by postsynaptic activity. Nature 280:58–60

    PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (2000) Models of object recognition. Nat Neurosci 3(Suppl):1199–1204

    PubMed  CAS  Google Scholar 

  • Seborg DE, Edgar TF, Mellichamp DA (1989) Process dynamics and control. Wiley, New York

    Google Scholar 

  • Shadmehr R, Holcomb HH (1999) Inhibitory control of competing motor memories. Exp Brain Res 126:235–251

    PubMed  CAS  Google Scholar 

  • Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114:727–741

    PubMed  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shergill SS, Samson G, Bays PM, Frith CD, Wolpert DM (2005) Evidence for sensory prediction deficits in schizophrenia. Am J Psychiatry 162(12):2384–2386

    PubMed  Google Scholar 

  • Shettleworth SJ, Juergesen MR (1980) Reinforcement and the organization of behaviour in golden hamsters: brain stimulation reinforcement for seven action patterns. J Exp Psychol Anim Behav Process 6:352–375

    PubMed  CAS  Google Scholar 

  • Shinskey FG (1996) Process control systems—application, design, and tuning. Systems, man & cybernetics, 4th edn. Omnipress, The Netherlands

  • Siegel S (1979) The role of conditioning in drug tolerance and addiction implication. In: Keehn JD (ed) Psychopathology in animals: research and treatment implications. Academic, New York, pp 143–168

    Google Scholar 

  • Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:705–884

    Google Scholar 

  • Stagner R (1977) Homeostasis, discrepancy, dissonance. Motiv Emotion 1:103–138

    Google Scholar 

  • Te’eni D (1991) Feedback in DSS as a source of control: experiments with the timing of feedback. Decis Sci 22:644–655

    Google Scholar 

  • Thorndike EL (1911) Animal intelligence: experimental studies. Macmillan, New York

    Google Scholar 

  • Turing MA (1936) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc 42:230–265

    Google Scholar 

  • Utz SW (1994) The effect of instructions on cognitive strategies and performance in biofeedback. J Behav Med 17:291–308

    PubMed  CAS  Google Scholar 

  • Vallat C, Azouvi P, Hardisson H, Meffert R, Tessier C, Pradat-Diehl P (2005) Rehabilitation of verbal working memory after left hemisphere stroke. Brain Inj 19(13):1157–1164

    PubMed  CAS  Google Scholar 

  • Wallis G, Rolls ET (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51:167–194

    PubMed  CAS  Google Scholar 

  • Wolpert DM (1998) Computational approaches to motor control. Trends Cogn Sci 1(6):209–216

    Google Scholar 

  • Zeigarnik B (1927) Ueber das Behalten von erledigten und unerledigten Handlungen. Psychol Forsch 9:1–85

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to A. Londei, A. Raffone and I. Ruspantini for the helpful comments on a draft version of the manuscript. D.B. was supported by the fund FIRB RBNE018ET9_003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demis Basso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basso, D., Olivetti Belardinelli, M. The role of the feedforward paradigm in cognitive psychology. Cogn Process 7, 73–88 (2006). https://doi.org/10.1007/s10339-006-0034-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-006-0034-1

Keywords

Navigation