Skip to main content

Advertisement

Log in

Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Since articular cartilage has a limited potential for spontaneous healing, various techniques are employed to repair cartilage lesions. Acrylate-based double-network (DN) hydrogels containing ~90% water have shown promising properties as repair materials for skeletal system soft tissues. Although their mechanical properties approach those of native cartilage, the critical factor—stiffness—of DN-gels does not equal the stiffness of articular cartilage. This study investigated whether revised PAMPS/PAAm compositions with lower water content result in stiffness parameters closer to cartilage. DN-gels containing 61, 86 and 90% water were evaluated using two non-destructive, mm-scale indentation test modes: fast-impact (FI) and slow-sinusoidal (SS) deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. The dynamic modulus increased with decreasing water content in both testing modes. In the 61% water DN-gel, the modulus resembled that of cartilage (FI-mode: DN-gel = 12, cartilage = 17; SS-mode: DN-gel = 4, cartilage = 1.7 MPa). Loss angle increased with decreasing water content in fast-impact, but not in slow-sinusoidal deformation. However, loss angle was still much lower than cartilage (FI: DN-gel = 5, cartilage = 11; SS: DN-gel = 10, cartilage = 32°), indicating somewhat less ability to dissipate energy. Overall, results show that it is possible to adapt DN-gel composition to produce dynamic stiffness properties close to normal articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold MP, Daniels AU, Ronken S, Ardura Garcia H, Friederich NF, Kurokawa T, Gong JP, Wirz D (2011) Acrylamide polymer double-network hydrogels: candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery- related attachment mechanics. Cartilage. doi:10.1177/1947603511402320

  • Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM, Gong JP, Osada Y (2006) Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A. doi:10.1002/jbm.a

  • Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14): 1155–1158. doi:10.1002/adma.200304907

    Article  Google Scholar 

  • Hunter W (1743) On the structure and diseases of articular cartilage. Philos T R Soc Lond 42: 514–521

    Article  Google Scholar 

  • Kren AP, Rudnitskii VA, Deikun IG (2005) Determining the viscoelastic parameters of vulcanisates by the dynamic indentation method using a non-linear deformation model. Int Polym Sci Technol 32(7): 19–23

    Google Scholar 

  • Lakes RS (1999) Viscoelastic solids. CRC Press, Boca Raton

    Google Scholar 

  • Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB, Erggelet C, Minas T, Peterson L (1998) Articular cartilage lesions of the knee. Am J Sports Med 26(6): 853–861

    Google Scholar 

  • Mankin H, Mow V, Buckwalter JA, Iannotti J, Ratcliffe A (2000) Articular cartilage structure, composition, and function. In: Buckwalter JA (ed) Orthopaedic basic science: biology and biomechanics of the musculoskeletal system. American Academy of Orthopaedic Surgeons, Rosemont, pp 443–470

    Google Scholar 

  • Minas T (1999) The role of cartilage repair techniques, including chondrocyte transplantation, in focal chondral knee damage. AAOS Instr Cours Lect 48: 629–643

    Google Scholar 

  • Mithoefer K, Scopp JM, Mandelbaum BR (2007) Articular cartilage repair in athletes. AAOS Instr Cours Lect 56: 457–468

    Google Scholar 

  • Nakajima T, Furukawa H, Tanaka Y, Kurokawa T, Osada Y, Gong JP (2009) True chemical structure of double network hydrogels. Macromolecules 42(6): 2184–2189. doi:10.1021/ma802148p

    Article  Google Scholar 

  • Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11): 1124–1128. doi:10.1002/adfm.200305197

    Article  Google Scholar 

  • Negrin L, Kutscha-Lissberg F, Gartlehner G, Vecsei V (2011) Clinical outcome after microfracture of the knee: a meta-analysis of before/after-data of controlled studies. Int Orthop. doi:10.1007/s00264-011-1364-x

  • Newman AP (1998) Articular cartilage repair. Am J Sport Med 26(2): 309–324

    Google Scholar 

  • Park S, Hung C, Ateshian G (2004) Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthr Cartil 12: 65–73. doi:10.1016/j.joca.2003.08.005

    Article  MATH  Google Scholar 

  • Peterson L, Brittberg M, Kiviranta I, Åkerlund EL, Lindahl A (2002) Autologous chondrocyte transplantation: biomechanics and long-term durability. Am J Sport Med 30(1): 2–12. doi:10.1097/BLO.0b013e3180e79c6a

    Google Scholar 

  • Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sport Med 38(6): 1117–1124. doi:10.1177/0363546509357915

    Article  Google Scholar 

  • Robert H (2011) Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res 97(4): 418–429. doi:10.1016/j.otsr.2011.04.001

    Article  Google Scholar 

  • Ronken S, Arnold MP, Ardura García H, Jeger A, Daniels AU, Wirz D (2011) A comparison of healthy human and swine articular cartilage dynamic indentation mechanics. Biomech Model Mechanobiol. doi:10.1007/s10237-011-0338-7

  • Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, Martin I, Wendt D (2010) Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials 31(34): 8946–8952. doi:10.1016/j.biomaterials.2010.08.009

    Article  Google Scholar 

  • Saris DBF, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2): 235–246. doi:10.1177/0363546507311095

    Article  Google Scholar 

  • Slauterbeck JR, Kousa P, Clifton BC, Naud S, Tourville TW, Johnson RJ, Beynnon BD (2009) Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J Bone Joint Surg Am 91: 2094–2103. doi:10.2106/JBJS.H.00888

    Article  Google Scholar 

  • Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14(3): 177–182. doi:10.1016/j.knee.2007.02.001

    Article  Google Scholar 

  • Wirz D, Kohler K, Keller B, Göpfert B, Hudetz D, Daniels AU (2008) Dynamic stiffness of articular cartilage by single impact micro-indentation (SIMI). J Biomech 41(Suppl 1): S172

    Article  Google Scholar 

  • Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y (2005) Biomechanical properties of high-toughness double network hydrogels. Biomaterials 26(21): 4468–4475. doi:10.1016/j.biomaterials.2004.11.021

    Article  Google Scholar 

  • Yasuda K, Kitamura N, Gong JP, Arakaki K, Kwon HJ, Onodera S, Chen YM, Kurokawa T, Kanaya F, Ohmiya Y, Osada Y (2009) A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol Biosci 9(4): 307–316. doi:10.1002/mabi.200800223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ronken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronken, S., Wirz, D., Daniels, A.U. et al. Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol 12, 243–248 (2013). https://doi.org/10.1007/s10237-012-0395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0395-6

Keywords

Navigation