Skip to main content
Log in

DNA repair gene expression in biological tissues exposed to low-intensity infrared laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Special properties of laser light have led to its usefulness in many applications in therapy. Excitation of endogenous chromophores in biotissues and generation of free radicals could be involved in its biological effects. DNA lesions induced by free radicals are repaired by base excision repair pathway. In this work, we evaluated the expression of APE1 and OGG1 genes related to repair of DNA lesions induced by free radicals. Skin and muscle tissues of Wistar rats were exposed to low-intensity infrared laser at different fluences and frequencies. After laser exposition of 1 and 24 h, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of APE1 and OGG1 gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of APE1 and OGG1 mRNA differently in skin and muscle tissues of Wistar rats depending of the fluence, frequency, and time after exposure. Our study suggests that low-intensity infrared laser affects expression of genes involved in repair of DNA lesions by base excision repair pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17

    Article  PubMed  CAS  Google Scholar 

  2. Niemz MH (2007) Laser–tissue interactions: fundamentals and applications. Springer, New York

    Google Scholar 

  3. Arisu HD, Türköz E, Bala O (2006) Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180

    Article  PubMed  Google Scholar 

  4. Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S, Formigli L, Giannelli M (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539

    Article  PubMed  Google Scholar 

  5. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908

    Article  PubMed  Google Scholar 

  6. Lagan KM, Clements BA, McDonough S, Baxter GD (2001) Low intensity laser therapy (830 nm) in the management of minor post surgical wounds: a controlled clinical study. Lasers Surg Med 28:27–32

    Article  PubMed  CAS  Google Scholar 

  7. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4

    Article  PubMed  Google Scholar 

  8. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325

    Article  PubMed  Google Scholar 

  9. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4:559–567

    Article  PubMed  CAS  Google Scholar 

  10. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314

    Article  PubMed  Google Scholar 

  11. Hu W-P, Wang J-J, Yu C-L, Lan C-CE, Chen G-S, Yu H-S (2007) Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investigat Dermatol 127:2048–2057

    Article  CAS  Google Scholar 

  12. Tafur J, Mills PJ (2008) Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 26:321–326

    Article  Google Scholar 

  13. Maiya GA, Kumar P, Rao L (2005) Effect of low intensity helium–neon (He–Ne) laser irradiation on diabetic wound healing dynamics. Photomed Laser Surg 23:187–190

    Article  PubMed  Google Scholar 

  14. Kushibiki T, Tajiri T, Ninomiya Y, Awazu K (2010) Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B 98:211–215

    Article  PubMed  CAS  Google Scholar 

  15. Omasa S, Motoyoshi M, Arai Y, Ejima K, Shimizu N (2012) Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg 30:255–61

    Article  PubMed  CAS  Google Scholar 

  16. Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010) Low intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42:519–526

    Article  PubMed  Google Scholar 

  17. Pereira LB, Chimello DT, Ferreira MR, Bachmann L, Rosa AL, Bombonato-Prado KF (2012) Low-level laser therapy influences mouse odontoblast-like cell response in vitro. Photomed Laser Surg 30:206–213

    Article  PubMed  CAS  Google Scholar 

  18. Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2012) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci in press

  19. Hamajima S, Hiratsuka K, Kiyama-Kishikawa M, Tagawa T, Kawahara M, Ohta M, Sasahara H, Abiko Y (2003) Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci 18:78–82

    Article  PubMed  CAS  Google Scholar 

  20. Yazdani SO, Golestaneh AF, Shafiee A, Hafizi M, Omrani HA, Soleimani M (2012) Effects of low level laser therapy on proliferation and neurotrophic factor gene expression of human Schwann cells in vitro. J Photochem Photobiol B 107:9–13

    Article  PubMed  CAS  Google Scholar 

  21. Zhang L, Zhao J, Kuboyama N, Abiko Y (2011) Low-level laser irradiation treatment reduces CCL2 expression in rat rheumatoid synovia via a chemokine signaling pathway. Lasers Med Sci 26:707–717

    Article  PubMed  Google Scholar 

  22. Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26:335–340

    Article  PubMed  Google Scholar 

  23. Joyce KM, Downes CS, Hannigan BM (1999) Radioadaptation in Indian muntjac fibroblast cells induced by low intensity laser irradiation. Mutat Res 435:35–42

    Article  PubMed  CAS  Google Scholar 

  24. Dube A, Bock C, Bauer E, Kohli R, Gupta PK (2001) He–Ne laser irradiation protects B-lymphoblasts from UVA-induced DNA damage. Radiat Environ Biophys 40:77–82

    Article  PubMed  CAS  Google Scholar 

  25. Zhang L, Hu Y (2002) Determination of laser-induced thymine–thymine dimer in DNA by LC. J Pharm Biomed Anal 29:95–102

    Article  PubMed  CAS  Google Scholar 

  26. Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium–neon laser irradiation. Lasers Surg Med 38:74–83

    Article  PubMed  Google Scholar 

  27. Kohli R, Gupta PK (2003) Irradiance dependence of He–Ne laser-induced protection against UVC radiation in E. coli strains. J Photochem Photobiol B: Biology 69:161–167

    Article  PubMed  CAS  Google Scholar 

  28. Houreld NN, Abrahamse H (2007) Effectiveness of helium–neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed Laser Surg 25:474–481

    Article  PubMed  CAS  Google Scholar 

  29. Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, Paoli S, Geller M, Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488

    Article  PubMed  Google Scholar 

  30. Fonseca AS, Geller M, Valença SS, Paoli F (2012) Low level infrared laser effect on plasmid DNA. Lasers Med Sci 27:121–130

    Article  PubMed  Google Scholar 

  31. Fonseca AS, Presta GA, Geller M, Paoli F, Valença SS (2012) Low-intensity infrared laser increases plasma proteins and induces oxidative stress in vitro. Lasers Med Sci 27:211–217

    Article  Google Scholar 

  32. Zhang Y, Song S, Fong C-C, Tsang C-H, Yang Z, Yang M (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 120:849–857

    Article  PubMed  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  34. Strauss PR, O'Regan NE (2001) Abasic site repair in higher eukaryotes. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair: vol. 3: advances from phage to humans. Human Press, Totowa, pp 43–85

    Chapter  Google Scholar 

  35. An N, Fleming AM, White HS, Burrows CJ (2012) Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci USA 109:11504–11509

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs AL, Schär P (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121:1–20

    Article  PubMed  CAS  Google Scholar 

  37. Klein HL, Hoot S (2011) Repair systems. In: Krebs JE, Goldstein ES, Kilpatrick ST (eds) Lewin's genes X. Jones and Bartlett, Sudbury

    Google Scholar 

  38. Mitra S, Hazra TK, Roy R, Ikeda S, Biswas T, Lock J, Boldogh I, Izumi T (1997) Complexities of DNA base excision repair in mammalian cells. Mol Cells 7:305–312

    PubMed  CAS  Google Scholar 

  39. Ramana CV, Boldogh I, Izumi T, Mitra S (1998) Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxic of free radicals. Proc Natl Acad Sci USA 95:5061–5066

    Article  PubMed  CAS  Google Scholar 

  40. Bjoras M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J 16:6314–6322

    Article  PubMed  CAS  Google Scholar 

  41. Bigot K, Leemput J, Vacher M, Campalans A, Radicella JP, Lacassagne E, Provost A, Masson C, Menasche M, Abitbol M (2009) Expression of 8-oxoguanine DNA glycosylase (Ogg1) in mouse retina. Mol Vision 15:1139–1152

    CAS  Google Scholar 

  42. Fonseca AS, Presta GA, Geller M, Paoli F (2011) Low intensity infrared laser induces filamentation in Escherichia coli cells. Laser Phys 21:1829–1837

    Article  CAS  Google Scholar 

  43. Stadler I, Evans R, Kolb B, Naim JO, Narayan V, Buehner N, Lanzafame RJ (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261

    Article  PubMed  CAS  Google Scholar 

  44. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218

    Article  PubMed  CAS  Google Scholar 

  45. Tirlapur UK, Konig K, Peuckert C, Krieg R, Halbhuber K (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Res 263:88–97

    Article  PubMed  CAS  Google Scholar 

  46. Fonseca AS, Teixeira AF, Presta GA, Geller M, Valença SS, Paoli F (2012) Low intensity infrared laser effects on Escherichia coli cultures and plasmid DNA. Laser Phys in press

  47. Avni D, Levkovitz S, Maltz L, Oron U (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277

    Article  PubMed  CAS  Google Scholar 

  48. Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92:144–152

    Article  PubMed  CAS  Google Scholar 

  49. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37

    Article  PubMed  CAS  Google Scholar 

  50. Kim YG (2002) Laser mediated production of reactive oxygen and nitrogen species; implications for therapy. Free Rad Res 36:1243–1250

    Article  CAS  Google Scholar 

  51. Karu T, Pyatibrat L, Kalendo G (1994) Irradiation with HeNe laser can influence the cytotoxic response of HeLa cells to ionizing radiation. Int J Radiat Biol 65:691–697

    Article  PubMed  CAS  Google Scholar 

  52. Andrade AC, Chrysis D, Audi L, Nilsson O (2011) Methods to study cartilage and bone development. Endocr Dev 21:52–66

    Article  PubMed  Google Scholar 

  53. Wesolowski R, Ramaswamy B (2011) Gene expression profiling: changing face of breast cancer classification and management. Gene Expr 15:105–115

    Article  PubMed  Google Scholar 

  54. Wu FR, Ding B, Qi B, Shang MB, Yang XX, Liu Y, Li WY (2012) Sequence analysis, expression patterns and transcriptional regulation of mouse Ifrg15 during preimplantation embryonic development. Gene in press

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adenilson de Souza da Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza da Fonseca, A., Mencalha, A.L., Araújo de Campos, V.M. et al. DNA repair gene expression in biological tissues exposed to low-intensity infrared laser. Lasers Med Sci 28, 1077–1084 (2013). https://doi.org/10.1007/s10103-012-1191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1191-3

Keywords

Navigation