Skip to main content
Log in

Understanding the recognition mechanisms of Zα domain of human editing enzyme ADAR1 (hZαADAR1) and various Z-DNAs from molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Z-DNA-binding domain of human double-stranded RNA adenosine deaminase I (hZαADAR1) can specifically recognize the left-handed Z-DNA which preferentially occurs at alternating purine-pyrimidine repeats, especially the CG-repeats. The interactions of hZαADAR1 and Z-DNAs in different sequence contexts can affect many important biological functions including gene regulation and chromatin remodeling. Therefore it is of great necessity to fully understand their recognition mechanisms. However, most existing studies are aimed at the standard CG-repeat Z-DNA rather than the non-CG-repeats, and whether the molecular basis of hZαADAR1 binding to various Z-DNAs are identical or not is still unclear on the atomic level. Here, based on the recently determined crystal structures of three representative non-CG-repeat Z-DNAs (d(CACGTG)2, d(CGTACG)2 and d(CGGCCG)2) in complex with hZαADAR1, 40 ns molecular dynamics simulation together with binding free energy calculation were performed for each system. For comparison, the standard CG-repeat Z-DNA (d(CGCGCG)2) complexed with hZαADAR1 was also simulated. The consistent results demonstrate that nonpolar interaction is the driving force during the protein-DNA binding process, and that polar interaction mainly from helix α3 also provides important contributions. Five common hot-spot residues were identified, namely Lys169, Lys170, Asn173, Arg174 and Tyr177. Hydrogen bond analysis coupled with surface charge distribution further reveal the interfacial information between hZαADAR1 and Z-DNA in detail. All of the analysis illustrate that four complexes share the common key features and the similar binding modes irrespective of Z-DNA sequences, suggesting that Z-DNA recognition by hZαADAR1 is conformation-specific rather than sequence-specific. Additionally, by analyzing the conformational changes of hZαADAR1, we found that the binding of Z-DNA could effectively stabilize hZαADAR1 protein. Our study can provide some valuable information for better understanding the binding mechanism between hZαADAR1 or even other Z-DNA-binding protein and Z-DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rich A, Nordheim A, Wang AH (1984) The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 53:791–846

    Article  CAS  Google Scholar 

  2. Ho PS (1994) The non-B-DNA structure of d (CA/TG)n does not differ from that of Z-DNA. Proc Natl Acad Sci U S A 91:9549–9553

    Article  CAS  Google Scholar 

  3. Wang G, Vasquez KM (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424–4438

    Article  CAS  Google Scholar 

  4. Rothenburg S, Koch-Nolte F, Rich A, Haag F (2001) A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci U S A 98:8985–8990

    Article  CAS  Google Scholar 

  5. Liu H, Mulholland N, Fu H, Zhao K (2006) Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol Cell Biol 26:2550–2559

    Article  CAS  Google Scholar 

  6. Herbert A, Rich A (1996) The biology of left-handed Z-DNA. J Biol Chem 271:11595–11598

    Article  CAS  Google Scholar 

  7. Herbert A, Rich A (1999) Left-handed Z-DNA: structure and function. Genetica 106:37–47

    Article  CAS  Google Scholar 

  8. Ha SC, Kim D, Hwang HY, Rich A, Kim YG, Kim KK (2008) The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA. Proc Natl Acad Sci U S A 105:20671–20676

    Article  CAS  Google Scholar 

  9. Ha SC (2004) A poxvirus protein forms a complex with left-handed Z-DNA: crystal structure of a Yatapoxvirus Zalpha bound to DNA. Proc Natl Acad Sci U S A 101:14367–14372

    Article  CAS  Google Scholar 

  10. Schwartz T, Lowenhaupt K, Heinemann U, Rich A (2001) Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Biol 8:761–765

    Article  CAS  Google Scholar 

  11. Schade M, Turner CJ, Kuhne R, Schmieder P, Lowenhaupt K, Herbert A, Rich A, Oschkinat H (1999) The solution structure of the Zalpha domain of the human RNA editing enzyme ADAR1 reveals a prepositioned binding surface for Z-DNA. Proc Natl Acad Sci U S A 96:12465–12470

    Article  CAS  Google Scholar 

  12. Schwartz T (1999) Crystal structure of the Z domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284:1841–1845

    Article  CAS  Google Scholar 

  13. Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, Lyubchenko YL, Rich A (1998) The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 26:3486–3493

    Article  CAS  Google Scholar 

  14. Herbert AG, Rich A (1993) A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide. Nucleic Acids Res 21:2669–2672

    Article  CAS  Google Scholar 

  15. Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A (1997) A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A 94:8421–8426

    Article  CAS  Google Scholar 

  16. Kim YG, Lowenhaupt K, Maas S, Herbert A, Schwartz T, Rich A (2000) The zab domain of the human RNA editing enzyme ADAR1 recognizes Z-DNA when surrounded by B-DNA. J Biol Chem 275:26828–26833

    CAS  Google Scholar 

  17. Kang YM, Bang J, Lee EH, Ahn HC, Seo YJ, Kim KK, Kim YG, Choi BS, Lee JH (2009) NMR spectroscopic elucidation of the B-Z transition of a DNA double helix induced by the Zalpha domain of human ADAR1. J Am Chem Soc 131:11485–11491

    Article  CAS  Google Scholar 

  18. Lee YM, Kim HE, Park CJ, Lee AR, Ahn HC, Cho SJ, Choi KH, Choi BS, Lee JH (2012) NMR study on the B-Z junction formation of DNA duplexes induced by Z-DNA binding domain of human ADAR1. J Am Chem Soc 134:5276–5283

    Article  CAS  Google Scholar 

  19. Lee EH, Seo YJ, Ahn HC, Kang YM, Kim HE, Lee YM, Choi BS, Lee JH (2010) NMR study of hydrogen exchange during the B-Z transition of a DNA duplex induced by the Zalpha domains of yatapoxvirus E3L. FEBS Lett 584:4453–4457

    Article  CAS  Google Scholar 

  20. Ha SC, Choi J, Hwang HY, Rich A, Kim YG, Kim KK (2008) The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ ADAR1. Nucleic Acids Res 37:629–637

    Article  Google Scholar 

  21. Seo YJ, Ahn HC, Lee EH, Bang J, Kang YM, Kim HE, Lee YM, Kim K, Choi BS, Lee JH (2010) Sequence discrimination of the Zalpha domain of human ADAR1 during B-Z transition of DNA duplexes. FEBS Lett 584:4344–4350

    Article  CAS  Google Scholar 

  22. Pan Y, Nussinov R (2006) Structural Basis for p53 binding-induced DNA bending. J Biol Chem 282:691–699

  23. Wan H, Hu JP, Li KS, Tian XH, Chang S (2013) Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors. PLoS One 8:e76045

    Article  CAS  Google Scholar 

  24. Habtemariam B, Anisimov VM, MacKerell AD Jr (2005) Cooperative binding of DNA and CBFbeta to the Runt domain of the CBFalpha studied via MD simulations. Nucleic Acids Res 33:4212–4222

    Article  CAS  Google Scholar 

  25. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  27. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  Google Scholar 

  28. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  29. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  30. Shen M, Zhou S, Li Y, Pan P, Zhang L, Hou T (2013) Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations. Mol BioSyst 9:361–374

    Article  CAS  Google Scholar 

  31. Hou T, Li N, Li Y, Wang W (2012) Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J Proteome Res 11:2982–2995

    Article  CAS  Google Scholar 

  32. Liu H, Yao X, Wang C, Han J (2010) In silico identification of the potential drug resistance sites over 2009 influenza A (H1N1) virus neuraminidase. Mol Pharm 7:894–904

    Article  CAS  Google Scholar 

  33. Yang Y, Liu H, Yao X (2012) Understanding the molecular basis of MK2–p38α signaling complex assembly: insights into protein–protein interaction by molecular dynamics and free energy studies. Mol BioSyst 8:2106

    Article  CAS  Google Scholar 

  34. Xue W, Qi J, Yang Y, Jin X, Liu H, Yao X (2012) Understanding the effect of drug-resistant mutations of HIV-1 intasome on raltegravir action through molecular modeling study. Mol BioSyst 8:2135

    Article  CAS  Google Scholar 

  35. Tsui V, Case DA (2000) Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 56:275–291

    Article  CAS  Google Scholar 

  36. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  CAS  Google Scholar 

  37. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877

    Article  CAS  Google Scholar 

  38. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. J Am Chem Soc 120:9401–9409

    Article  CAS  Google Scholar 

  39. Xu L, Sun H, Li Y, Wang J, Hou T (2013) Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J Phys Chem B 117:8408–8421

    Article  CAS  Google Scholar 

  40. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  41. Cui Q, Sulea T, Schrag JD, Munger C, Hung MN, Naim M, Cygler M, Purisima EO (2008) Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex. J Mol Biol 379:787–802

    Article  CAS  Google Scholar 

  42. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  43. Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci U S A 96:14330–14335

    Article  CAS  Google Scholar 

  44. Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories. 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3:2312–2334

  45. Lou H, Cukier RI (2006) Molecular dynamics of apo-adenylate kinase: a principal component analysis. J Phys Chem B 110:12796–12808

    Article  CAS  Google Scholar 

  46. Prompers JJ, Bruschweiler R (2002) Dynamic and structural analysis of isotropically distributed molecular ensembles. Proteins 46:177–189

    Article  CAS  Google Scholar 

  47. Wang X, Xu X, Zhu S, Xiao Z, Ma Z, Li Y, Wang Y (2012) Molecular dynamics simulation of conformational heterogeneity in transportin 1. Proteins 80:382–397

    Article  CAS  Google Scholar 

  48. Hu C, Zhang Y, Huang G, Zhang Q, Gui J (2004) Molecular cloning and characterization of a fish PKR-like gene from cultured CAB cells induced by UV-inactivated virus. Fish Shellfish Immunol 17:353–366

    Article  CAS  Google Scholar 

  49. Kim YG, Muralinath M, Brandt T, Pearcy M, Hauns K, Lowenhaupt K, Jacobs RL, Rich A (2003) A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci U S A 10:6974–6979

    Article  Google Scholar 

  50. Kim YG, Lowenhaupt K, Oh DB, Kim KK, Rich A (2004) Evidence that vaccinia virulence factor E3L binds to Z-DNA in vivo: implications for development of a therapy for poxvirus infection. Proc Natl Acad Sci U S A 101:1514–1518

  51. Garvie CW, Wolberger C (2001) Recognition of specific DNA sequences. Mol Cell 8:937–946

    Article  CAS  Google Scholar 

  52. Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B (2009) The role of DNA shape in protein-DNA recognition. Nature 461:1248–1253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No 21175063) and the Natural Science Foundation of Gansu Province, China (Grant No: 1208RJYA034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanxiang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, L., Wang, X. et al. Understanding the recognition mechanisms of Zα domain of human editing enzyme ADAR1 (hZαADAR1) and various Z-DNAs from molecular dynamics simulation. J Mol Model 20, 2500 (2014). https://doi.org/10.1007/s00894-014-2500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2500-5

Keywords

Navigation