Skip to main content

Advertisement

Log in

Mimicking direct protein–protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules. We have focussed on the enzyme 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase (CMK), which catalyses the fourth reaction step of the MEP pathway. A molecular dynamics simulation was carried out on the CMK dimer complex, and protein–protein interactions analysed, considering also water-mediated interactions between monomers. In order to find small molecules that bind to CMK and disrupt dimer formation, interactions observed in the dynamics trajectory were used to model a pharmacophore used in database searches. Using an intensity-fading matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry approach, one compound was found to interact with CMK. The data presented here indicate that a virtual screening approach can be used to identify candidate molecules that disrupt the CMK–CMK complex. This strategy can contribute to speeding up the discovery of new antimalarial, antibacterial, and herbicidal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sacchettini JC, Poulter CD (1997) Science 277(5333):1788–1789

    Article  CAS  Google Scholar 

  2. Chappell J (1995) Annu Rev Plant Physiol Plant Mol Biol 46:521–547

    Article  CAS  Google Scholar 

  3. McGarvey DJ, Croteau R (1995) Plant Cell 7(7):1015–1026

    Article  CAS  Google Scholar 

  4. Croteau R, Kutchan T, Lewis N (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, MD, pp 1250–1268

    Google Scholar 

  5. Chappell J (2002) Curr Opin Plant Biol 5(2):151–157

    Article  CAS  Google Scholar 

  6. Flesch G, Rohmer M (1988) Eur J Biochem 175(2):405–411

    Article  CAS  Google Scholar 

  7. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Biochem J 295(Pt 2):517–524

    CAS  Google Scholar 

  8. Schwarz MK (1994) Terpenbiosynthese in Ginkgo biloba: Eine überraschende Geschichte. PhD Thesis. Eidgenoessische Technische Hochschule, Zurich

  9. Rodríguez-Concepción M, Boronat A (2002) Plant Physiol 130(3):1079–1089

    Article  Google Scholar 

  10. Rohmer M, Grosdemange-Billiard C, Seemann M, Tritsch D (2004) Curr Opin Investig Drugs 5(2):154–162

    CAS  Google Scholar 

  11. Boucher Y, Doolittle WF (2000) Mol Microbiol 37(4):703–716

    Article  CAS  Google Scholar 

  12. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) FEBS Lett 400:271–274

    Article  CAS  Google Scholar 

  13. Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) Chem Biol 5(9):R221–R233

    Article  CAS  Google Scholar 

  14. Lichtenthaler HK (1999) Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  Google Scholar 

  15. Rohmer M (1999) Nat Prod Rep 16(5):565–574 (Oct)

    Article  CAS  Google Scholar 

  16. Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Tetrahedron Lett 39(43):7913–7916

    Article  CAS  Google Scholar 

  17. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Science 285(5433):1573–1576

    Article  CAS  Google Scholar 

  18. Lichtenthaler HK (2000) Biochem Soc Trans 28:785–789

    Article  CAS  Google Scholar 

  19. Testa CA, Brown MJ (2003) Curr Pharm Biotechnol 4(4):248–259

    Article  CAS  Google Scholar 

  20. Wiesner J, Borrmann S, Jomaa H (2003) Parasitol Res 90(2):S71–S76

    Article  Google Scholar 

  21. Missinou MA, Borrmann S, Schindler A, Issifou S, Adegnika AA, Matsiegui PB, Binder R, Lell B, Wiesner J, Baranek T, Jomaa H, Kremsner PG (2002) Lancet 360(9349):1941–1942

    Article  CAS  Google Scholar 

  22. Zeidler JG, Schwender J, Müller C, Wiesner J, Weidemeyer C, Beck E, Jomaa H, Lichtenthaler HK (1998) Z Naturforsch 53(c):980–986

    CAS  Google Scholar 

  23. Borrmann S, Issifou S, Esser G, Adegnika AA, Ramharter M, Matsiegui PB, Oyakhirome S, Mawili-Mboumba DP, Missinou MA, Kun JF, Jomaa H, Kremsner PG (2004) J Infect Dis 190(9):1534–1540

    Article  CAS  Google Scholar 

  24. Miallau L, Alphey MS, Kemp LE, Leonard GA, McSweeney SM, Hecht S, Bacher A, Eisenreich W, Rohdich F, Hunter WN (2003) Proc Natl Acad Sci USA 100(16):9173–9178

    Article  CAS  Google Scholar 

  25. Gabrielsen M, Bond CS, Hallyburton I, Hecht S, Bacher A, Eisenreich W, Rohdich F, Hunter WN (2004) J Biol Chem 279(50):52753–52761

    Article  CAS  Google Scholar 

  26. Wells JA, McClendon CL (2007) Nature 450(7172):1001–1009

    Article  CAS  Google Scholar 

  27. Sperandio O, Miteva MA, Segers K, Nicolaes GA, Villoutreix BO (2008) Open Biochem J2:29–37

    Article  Google Scholar 

  28. Smrcka AV, Lehmann DM, Dessal AL (2008) Comb Chem High Throughput Screen 11(5):382–395

    Article  CAS  Google Scholar 

  29. Fletcher S, Hamilton AD (2007) Curr Top Med Chem (10):922–7

  30. Whitty A, Kumaravel G (2006) Nat Chem Biol 2(3):112–118

    Article  CAS  Google Scholar 

  31. Samsonov S, Teyra J, Pisabarro MT (2008) Proteins 73(2):515–525

    Article  CAS  Google Scholar 

  32. Jiang L, Kuhlman B, Kortemme T, Baker D (2005) Proteins 58(4):893–904

    Article  CAS  Google Scholar 

  33. Furukawa Y, Morishima I (2001) J Biol Chem 20 276(16):12983–12990

    Article  CAS  Google Scholar 

  34. Langhorst U, Backmann J, Loris R, Steyaert J (2000) Biochemistry 39(22):6586–6593

    Article  CAS  Google Scholar 

  35. Janin J (1999) Structure 7(12):R277–R279

    Article  CAS  Google Scholar 

  36. van Dijk AD, Bonvin AM (2006) Bioinformatics 22(19):2340–2347

    Article  Google Scholar 

  37. Yanes O, Villanueva J, Querol E, Aviles FX (2005) Mol Cell Proteomics 4(10):1602–1613

    Article  CAS  Google Scholar 

  38. Villanueva J, Yanes O, Querol E, Serrano L, Aviles FX (2003) Anal Chem 75(14):3385–3395

    Article  CAS  Google Scholar 

  39. Case DA, Pearlman DA, Caldwell JW, Cheatham TEI, Wang J, Ross WS, Simmerling C, Darden T, Merz KM, Stanton RV, Cheng A, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer R, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner P, Kollman PA (2002) AMBER7. University of California, San Francisco, CA

    Google Scholar 

  40. Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16:11

    Article  CAS  Google Scholar 

  41. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157

    Article  CAS  Google Scholar 

  42. Jakalian A, Bush BL, Jack DB, Bayly CL (2000) J Comp Chem 21(2):132–146

    Article  CAS  Google Scholar 

  43. Jorgensen WL, Chandrasekhar J, Madura JD (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  44. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  45. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comp Phys 23:327

    Article  CAS  Google Scholar 

  46. Berendsen HJC, Postman JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  47. Bernal C, Mendez E, Terencio J, Boronat A, Imperial S (2005) Anal Biochem 340(2):245–251

    Article  CAS  Google Scholar 

  48. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  49. Karas M, Hillenkamp F (1988) Anal Chem 60(20):2299–2301

    Article  CAS  Google Scholar 

  50. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  51. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33–38,27–38

    Google Scholar 

  52. Levy Y, Onuchic JN (2006) Annu Rev Biophys Biomol Struct 35:389–415

    Article  CAS  Google Scholar 

  53. Sreenivasan U, Axelsen PH (1992) Biochemistry 31(51):12785–12791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Drs. Eliandre de Oliveira and Maria Antonia Odena Caballol, from the Proteomics Platform, Barcelona Science Park, in the intensity-fading MALDI-TOF mass spectrometry experiments is gratefully acknowledged. This work was financed in part with grants from the University of Barcelona (ACES-UB), the Spanish Ministerio de Ciencia y Tecnología (CTQ2006-06588/BQU, BIO2002-04419-C02-02 and BIO2008-01184) and the Generalitat de Catalunya (2005SGR00914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Imperial.

Additional information

V. Giménez-Oya and Ó. Villacañas contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giménez-Oya, V., Villacañas, Ó., Fernàndez-Busquets, X. et al. Mimicking direct protein–protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach. J Mol Model 15, 997–1007 (2009). https://doi.org/10.1007/s00894-009-0458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0458-5

Keywords

Navigation