Skip to main content
Log in

The effect of temperature on enzyme activity: new insights and their implications

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The two established thermal properties of enzymes are their activation energy and their thermal stability. Arising from careful measurements of the thermal behaviour of enzymes, a new model, the Equilibrium Model, has been developed to explain more fully the effects of temperature on enzymes. The model describes the effect of temperature on enzyme activity in terms of a rapidly reversible active-inactive transition, in addition to an irreversible thermal inactivation. Two new thermal parameters, T eq and ΔH eq, describe the active–inactive transition, and enable a complete description of the effect of temperature on enzyme activity. We review here the Model itself, methods for the determination of T eq and ΔH eq, and the implications of the Model for the environmental adaptation and evolution of enzymes, and for biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Creighton TE (1993) Proteins. Freeman, New York

    Google Scholar 

  • Daniel RM, Danson MJ (2001) Assaying activity and assessing thermostability of hyperthermophilic enzymes. Methods Enzymol 334:283–293

    Article  PubMed  CAS  Google Scholar 

  • Daniel RM, Danson MJ, Eisenthal R (2001) The temperature optima of enzymes: a new perspective on an old phenomenon. Trends Biochem Sci 26:223–225

    Article  PubMed  CAS  Google Scholar 

  • Eisenthal R, Peterson ME, Daniel RM, Danson MJ (2006) The thermal behaviour of enzymes: implications for biotechnology. Trends Biotechnol 24:289–292

    Article  PubMed  CAS  Google Scholar 

  • Fulton KF, Devlin GL, Jodun RA, Silvestri L, Bottomley SP, Fersht AR, Buckle AM (2005) PFD: a database for the investigation of protein folding kinetics and stability. Nucleic Acids Res 33:D279–D283

    Article  PubMed  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  PubMed  CAS  Google Scholar 

  • Hardy WB (1899) On the structure of cell protoplasm. J Physiol 24:158

    PubMed  CAS  Google Scholar 

  • Hudson RC, Ruttersmith LD, Daniel RM (1993) Glutamate dehydrogenase from the extremely thermophilic archaebacterial isolate AN1. Biochem Biophys Acta 102:244–250

    Google Scholar 

  • Lee CK, Daniel RM, Shepherd C, Saul DJ, Cary SC, Danson MJ, Eisenthal R, Peterson ME (2007) Eurythermalism and the temperature dependence of enzyme activity. FASEB J 21:1934–1941

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Tsigos I, Bouriotis V, Klinman JP (2004) Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases. J Am Chem Soc 126:9500–9501

    Article  PubMed  CAS  Google Scholar 

  • Lumry R, Eyring H (1954) Conformational changes of proteins. J Phys Chem 58:110

    Article  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Peterson ME, Daniel RM, Danson MJ, Eisenthal R (2007) The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem J 402:331–337

    Article  PubMed  CAS  Google Scholar 

  • Peterson ME, Eisenthal R, Danson MJ, Spence A, Daniel RM (2004) A new, intrinsic, thermal parameter for enzymes reveals true temperature optima. J Biol Chem 279:20717–20722

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman DW, Lineweaver CH (2004) The hyperthermophilic origin of life revisited. Biochem Soc Trans 32:168–171

    Article  PubMed  CAS  Google Scholar 

  • Sizer IW (1944) Temperature activation and inactivation of the crystalline catalase–hydrogen peroxide system. J Biol Chem 154:461–473

    CAS  Google Scholar 

  • Thomas TM, Scopes RK (1998) The effects of temperature on the kinetics and stability of mesophilic and thermophilic 3-phosphoglycerate kinases. Biochem J 330:1087–1095

    PubMed  CAS  Google Scholar 

  • Wachtershauser G (1998) In: Wiegel K, Adams M, (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor and Francis, Philadelphia, pp 47–57

  • Wright GG, Schomaker VJ (1948) Studies on the denaturation of antibody. iii. Kinetic aspects of the inactivation of diphtheria antitoxin by urea. Am Chem Soc 70:356–364

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Royal Society of New Zealand’s Marsden Fund and the National Science Foundation (Biocomplexity 0120648) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy M. Daniel.

Additional information

Communicated by D.A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, R.M., Danson, M.J., Eisenthal, R. et al. The effect of temperature on enzyme activity: new insights and their implications. Extremophiles 12, 51–59 (2008). https://doi.org/10.1007/s00792-007-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0089-7

Keywords

Navigation