Skip to main content

Advertisement

Log in

Recent advances in the development of tissue transglutaminase (TG2) inhibitors

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Tissue transglutaminase (TG2) is a Ca2+-dependent enzyme and probably the most ubiquitously expressed member of the mammalian transglutaminase family. TG2 plays a number of important roles in a variety of biological processes. Via its transamidating function, it is responsible for the cross-linking of proteins by forming isopeptide bonds between glutamine and lysine residues. Intracellularly, Ca2+ activation of the enzyme is normally tightly regulated by the binding of GTP. However, upregulated levels of TG2 are associated with many disease states like celiac sprue, certain types of cancer, fibrosis, cystic fibrosis, multiple sclerosis, Alzheimer’s, Huntington’s and Parkinson’s disease. Selective inhibitors for TG2 both cell penetrating and non-cell penetrating would therefore serve as novel therapeutic tools for the treatment of these disease states. Moreover, they would provide useful tools to fully elucidate the cellular mechanisms TG2 is involved in and help comprehend how the enzyme is regulated at the cellular level. The current paper is intended to give an update on the recently discovered classes of TG2 inhibitors along with their structure–activity relationships. The biological properties of these derivatives, in terms of both activity and selectivity, will also be reported in order to translate their potential for future therapeutic developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

TGase:

Transglutaminase

SAR:

Structure–activity relationship

HYD:

Hydrophobic

HBA:

Hydrogen bond acceptor

GTP:

Guanosine triphosphate

GDH:

Glutamate dehydrogenase

5-BP:

5-Biotinamidopentylamine

tBoc:

tert-Butyloxycarbonyl

Cbz:

Benzyloxycarbonyl

Fmoc:

Fluorenylmethyloxycarbonyl

Ac:

Acetyl

References

  • Ahvazi B, Boeshans KM, Idler W, Baxa U, Steinert PM, Rastinejad F (2004) Structural basis for the coordinated regulation of transglutaminase 3 by guanine nucleotides and calcium/magnesium. J Biol Chem 279(8):7180–7192

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Golenhofen N, Weth A, Hiiragi T, Saint R, Griffin M, Drenckhahn D (2004) Role of transglutaminase 1 in stabilisation of intercellular junctions of the vascular endothelium. Histochem Cell Biol 122(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Brunner J (1993) New photolabeling and crosslinking methods. Annu Rev Biochem 62:483–514

    Article  PubMed  CAS  Google Scholar 

  • Candi E, Paradisi A, Terrinoni A, Pietroni V, Oddi S, Cadot B, Jogini V, Meiyappan M, Clardy J, Finazzi-Agro A, Melino G (2004) Transglutaminase 5 is regulated by guanine-adenine nucleotides. Biochem J 381(Pt 1):313–319

    PubMed  CAS  Google Scholar 

  • Case A, Stein RL (2007) Kinetic analysis of the interaction of tissue transglutaminase with a nonpeptidic slow-binding inhibitor. Biochemistry 46(4):1106–1115

    Article  PubMed  CAS  Google Scholar 

  • Castelhano AL, Billedeau R, Pliura DH, Bonaventura BJ, Krantz A (1988) Synthesis, chemistry, and absolute configuration of novel transglutaminase inhibitors containing a 3-halo-4, 5-dihydroisoxazole. Bioorg Chem 16(3):335–340

    Article  CAS  Google Scholar 

  • Chen JS, Mehta K (1999) Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol 31(8):817–836

    Article  PubMed  CAS  Google Scholar 

  • Chica RA, Gagnon P, Keillor JW, Pelletier JN (2004) Tissue transglutaminase acylation: proposed role of conserved active site Tyr and Trp residues revealed by molecular modeling of peptide substrate binding. Protein Sci 13(4):979–991

    Article  PubMed  CAS  Google Scholar 

  • Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, Omary B, Rich KM, Khosla C (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12(4):469–475

    Article  PubMed  CAS  Google Scholar 

  • Chung SI, Folk JE (1970) Mechanism of the inactivation of guinea pig liver transglutaminase by tetrathionate. J Biol Chem 245(4):681–689

    PubMed  CAS  Google Scholar 

  • Colak G, Keillor JW, Johnson GV (2011) Cytosolic guanine nucledotide binding deficient form of transglutaminase 2 (R580a) potentiates cell death in oxygen glucose deprivation. PLoS One 6(1):e16665

    Article  PubMed  CAS  Google Scholar 

  • Connellan JM, Folk JE (1969) Mechanism of the inactivation of guinea pig liver transglutaminase by 5, 5′-dithiobis-(2-nitrobenzoic acid). J Biol Chem 244(12):3173–3181

    PubMed  CAS  Google Scholar 

  • Dafik L, Khosla C (2011) Dihydroisoxazole analogs for labeling and visualization of catalytically active transglutaminase 2. Chem Biol 18(1):58–66

    Article  PubMed  CAS  Google Scholar 

  • de Macedo P, Marrano C, Keillor JW (2002) Synthesis of dipeptide-bound epoxides and alpha, beta-unsaturated amides as potential irreversible transglutaminase inhibitors. Bioorg Med Chem 10(2):355–360

    Article  PubMed  Google Scholar 

  • Duval E, Case A, Stein RL, Cuny GD (2005) Structure–activity relationship study of novel tissue transglutaminase inhibitors. Bioorg Med Chem Lett 15(7):1885–1889

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2):377–396

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Coutts IG, Saint RE (2004) Novel compounds and methods of using the same. World Patent WO 2004/113363 A2, 29 December 2004

  • Griffin M, Mongeot A, Collighan R, Saint RE, Jones RA, Coutts IG, Rathbone DL (2008) Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett 18(20):5559–5562

    Article  PubMed  CAS  Google Scholar 

  • Halim D, Caron K, Keillor JW (2007) Synthesis and evaluation of peptidic maleimides as transglutaminase inhibitors. Bioorg Med Chem Lett 17(2):305–308

    Article  PubMed  CAS  Google Scholar 

  • Hitomi K, Kitamura M, Sugimura Y (2009) Preferred substrate sequences for transglutaminase 2: screening using a phage-displayed peptide library. Amino Acids 36(4):619–624

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Haylor JL, Hau Z, Jones RA, Vickers ME, Wagner B, Griffin M, Saint RE, Coutts IG, El Nahas AM, Johnson TS (2009) Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int 76(4):383–394

    Article  PubMed  CAS  Google Scholar 

  • Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, Saint R, Coutts I, Vickers ME, El Nahas AM, Griffin M (2007) Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol 18(12):3078–3088

    Article  PubMed  CAS  Google Scholar 

  • Johnson T, Fisher M, Haylor J, Hau Z, Skill N, Jones R, Saint R, Coutts I, El Nahas A, Griffin M (2008) Transglutaminase inhibition ameliorates tissue scarring and fibrosis: experience in a kidney model. J Am Soc 14(8):2052

    Google Scholar 

  • Jones RA, Kotsakis P, Johnson TS, Chau DY, Ali S, Melino G, Griffin M (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13(9):1442–1453

    Article  PubMed  CAS  Google Scholar 

  • Klock C, Jin X, Choi K, Khosla C, Madrid PB, Spencer A, Raimundo BC, Boardman P, Lanza G, Griffin JH (2011) Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett 21(9):2692–2696

    Article  PubMed  Google Scholar 

  • Lai TS, Liu Y, Tucker T, Daniel KR, Sane DC, Toone E, Burke JR, Strittmatter WJ, Greenberg CS (2008) Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol 15(9):969–978

    Article  PubMed  CAS  Google Scholar 

  • Leblanc A, Gravel C, Labelle J, Keillor JW (2001) Kinetic studies of guinea pig liver transglutaminase reveal a general-base-catalyzed deacylation mechanism. Biochemistry 40(28):8335–8342

    Article  PubMed  CAS  Google Scholar 

  • Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58(1):9–35

    Article  PubMed  CAS  Google Scholar 

  • Marrano C, de Macedo P, Gagnon P, Lapierre D, Gravel C, Keillor JW (2001a) Synthesis and evaluation of novel dipeptide-bound 1, 2, 4-thiadiazoles as irreversible inhibitors of guinea pig liver transglutaminase. Bioorg Med Chem 9(12):3231–3241

    Article  PubMed  CAS  Google Scholar 

  • Marrano C, de Macedo P, Keillor JW (2001b) Evaluation of novel dipeptide-bound alpha, beta-unsaturated amides and epoxides as irreversible inhibitors of guinea pig liver transglutaminase. Bioorg Med Chem 9(7):1923–1928

    Article  PubMed  CAS  Google Scholar 

  • McGovern SL, Helfand BT, Feng B, Shoichet BK (2003) A specific mechanism of nonspecific inhibition. J Med Chem 46(20):4265–4272

    Article  PubMed  CAS  Google Scholar 

  • Okauchi M, Xi G, Keep RF, Hua Y (2009) Tissue-type transglutaminase and the effects of cystamine on intracerebral hemorrhage-induced brain edema and neurological deficits. Brain Res 1249:229–236

    Article  PubMed  CAS  Google Scholar 

  • Ozaki S, Ebisui E, Hamada K, Goto J, Suzuki AZ, Terauchi A, Mikoshiba K (2010) Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones. Bioorg Med Chem Lett 20(3):1141–1144

    Article  PubMed  CAS  Google Scholar 

  • Ozaki S, Ebisui E, Hamada K, Suzuki AZ, Terauchi A, Mikoshiba K (2011) Potent transglutaminase inhibitors, dithio beta-aminoethyl ketones. Bioorg Med Chem Lett 21(1):377–379

    Article  PubMed  CAS  Google Scholar 

  • Pardin C, Gillet SM, Keillor JW (2006) Synthesis and evaluation of peptidic irreversible inhibitors of tissue transglutaminase. Bioorg Med Chem 14(24):8379–8385

    Article  PubMed  CAS  Google Scholar 

  • Pardin C, Pelletier JN, Lubell WD, Keillor JW (2008a) Cinnamoyl inhibitors of tissue transglutaminase. J Org Chem 73(15):5766–5775

    Article  PubMed  CAS  Google Scholar 

  • Pardin C, Roy I, Lubell WD, Keillor JW (2008b) Reversible and competitive cinnamoyl triazole inhibitors of tissue transglutaminase. Chem Biol Drug Des 72(3):189–196

    Article  PubMed  CAS  Google Scholar 

  • Pardin C, Roy I, Chica RA, Bonneil E, Thibault P, Lubell WD, Pelletier JN, Keillor JW (2009) Photolabeling of tissue transglutaminase reveals the binding mode of potent cinnamoyl inhibitors. Biochemistry 48(15):3346–3353

    Article  PubMed  CAS  Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327

    Article  PubMed  Google Scholar 

  • Pliura DH, Bonaventura BJ, Pauls HW, Killackey JF, Krantz A (1992) Irreversible inhibition of transglutaminases by sulfonium methylketones: optimization of specificity and potency with omega-aminoacyl spacers. J Enzym Inhib 6(3):181–194

    Article  PubMed  CAS  Google Scholar 

  • Schaertl S, Prime M, Wityak J, Dominguez C, Munoz-Sanjuan I, Pacifici RE, Courtney S, Scheel A, Macdonald D (2010) A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. J Biomol Screen 15(5):478–487

    Article  PubMed  CAS  Google Scholar 

  • Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115(2):232–245

    Article  PubMed  CAS  Google Scholar 

  • Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, Khosla C (2008) Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 3(3):e1861

    Article  PubMed  Google Scholar 

  • Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48(38):6974–6998

    Article  PubMed  CAS  Google Scholar 

  • Strnad P, Siegel M, Toivola DM, Choi K, Kosek JC, Khosla C, Omary MB (2006) Pharmacologic transglutaminase inhibition attenuates drug-primed liver hypertrophy but not Mallory body formation. FEBS Lett 580(9):2351–2357

    Article  PubMed  CAS  Google Scholar 

  • Sugimura Y, Yamashita H, Hitomi K (2011) Screening of substrate peptide sequences for tissue-type transglutaminase (TGase 2) using T7 phage cDNA library. Cytotechnology 63(2):111–118

    Article  PubMed  CAS  Google Scholar 

  • Telci D, Collighan RJ, Basaga H, Griffin M (2009) Increased TG2 expression can result in induction of transforming growth factor β1, causing increased synthesis and deposition of matrix proteins, which can be regulated by nitric oxide. J Biol Chem 284(43):29547–29558

    Article  PubMed  CAS  Google Scholar 

  • Verhaar R, Jongenelen CA, Gerard M, Baekelandt V, Van Dam AM, Wilhelmus MM, Drukarch B (2011) Blockade of enzyme activity inhibits tissue transglutaminase-mediated transamidation of alpha-synuclein in a cellular model of Parkinson’s disease. Neurochem Int 58(7):785–793

    Google Scholar 

  • Watts RE, Siegel M, Khosla C (2006) Structure–activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 49(25):7493–7501

    Article  PubMed  CAS  Google Scholar 

  • Wodzinska JM (2005) Transglutaminases as targets for pharmacological inhibition. Mini Rev Med Chem 5(3):279–292

    Article  PubMed  CAS  Google Scholar 

  • Ziebell MR, Nirthanan S, Husain SS, Miller KW, Cohen JB (2004) Identification of binding sites in the nicotinic acetylcholine receptor for [3H]azietomidate, a photoactivatable general anesthetic. J Biol Chem 279(17):17640–17649

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E.B. is a research fellow with the support of the Marie Curie Seventh Framework Programme Industry-Academia Partnerships and Pathways (IAPP), TRANSCOM: “The Commercialisation of Transglutaminase” (FP7 No: 251506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Griffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badarau, E., Collighan, R.J. & Griffin, M. Recent advances in the development of tissue transglutaminase (TG2) inhibitors. Amino Acids 44, 119–127 (2013). https://doi.org/10.1007/s00726-011-1188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1188-4

Keywords

Navigation