Skip to main content
Log in

Pharmacokinetics and cerebral distribution of glycine administered to rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

High doses of glycine have been reported to improve negative schizophrenic symptoms, suggesting that ingested glycine activates glutamatergic transmission via N-methyl-d-aspartate (NMDA) receptors. However, the pharmacokinetics of administered glycine in the brain has not been evaluated. In the present study, the time- and dose-dependent distributions of administered glycine were investigated from a pharmacokinetic viewpoint. Whole-body autoradiography of radiolabeled glycine was performed, and time–concentration curves for glycine and serine in plasma, cerebrospinal fluid (CSF), and brain tissues were obtained. Furthermore, pharmacokinetic parameters were calculated. For a more detailed analysis, the amount of glycine uptake in the brain was evaluated using the brain uptake index method. Radiolabeled glycine was distributed among periventricular organs in the brain. Oral administration of 2 g/kg of glycine significantly elevated the CSF glycine concentration above the ED50 value for NMDA receptors. The glycine levels in CSF were 100 times lower than those in plasma. Glycine levels were elevated in brain tissue, but with a slower time-course than in CSF. Serine, a major metabolite of glycine, was elevated in plasma, CSF, and brain tissue. Glycine uptake in brain tissue increased in a dose-dependent manner. Time–concentration curves revealed that glycine was most likely transported via the blood–CSF barrier and activated NMDA receptors adjacent to the ventricles. The pharmacokinetic analysis and the brain uptake index for glycine suggested that glycine was transported into brain tissue by passive diffusion. These results provide further insight into the potential therapeutic applications of glycine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bachmann C, Braissant O, Villard AM, Boulat O, Henry H (2004) Ammonia toxicity to the brain and creatine. Mol Genet Metab 81 Suppl 1:S52–S57. doi:10.1016/j.ymgme.2003.10.014

  • Bannai M, Kawai N, Nagao K, Nakano S, Matsuzawa D, Shimizu E (2011) Oral administration of glycine increases extracellular serotonin but not dopamine in the prefrontal cortex of rats. Psychiatry Clin Neurosci 65(2):142–149. doi:10.1111/j.1440-1819.2010.02181.x

    Article  PubMed  CAS  Google Scholar 

  • Betz H, Gomeza J, Armsen W, Scholze P, Eulenburg V (2006) Glycine transporters: essential regulators of synaptic transmission. Biochem Soc Trans 34(Pt 1):55–58. doi:10.1042/BST0340055

    PubMed  CAS  Google Scholar 

  • Cape EG, Jones BE (2000) Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep–wake state. Eur J Neurosci 12(6):2166–2184. pii:ejn099

    Article  PubMed  CAS  Google Scholar 

  • dos Santos Fagundes I, Rotta LN, Schweigert ID, Valle SC, de Oliveira KR, Huth Kruger A, Souza KB, Souza DO, Perr ML (2001) Glycine, serine, and leucine metabolism in different regions of rat central nervous system. Neurochem Res 26(3):245–249

    Article  PubMed  CAS  Google Scholar 

  • D’Souza DC, Charney DS, Krystal JH (1995) Glycine site agonists of the NMDA receptor: a review. CNS Drug Rev 1(2):227–260. doi:10.1111/j.1527-3458.1995.tb00285.x

    Article  Google Scholar 

  • D’Souza DC, Gil R, Cassello K, Morrissey K, Abi-Saab D, White J, Sturwold R, Bennett A, Karper LP, Zuzarte E, Charney DS, Krystal JH (2000) IV glycine and oral d-cycloserine effects on plasma and CSF amino acids in healthy humans. Biol Psychiatry 47(5):450–462. pii:S0006-3223(99)00133-X

    Article  PubMed  Google Scholar 

  • Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, Talpos J, Tricklebank M (2011) NMDA receptors, cognition and schizophrenia—testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology. doi:10.1016/j.neuropharm.2011.03.015

  • Gomeza J, Hulsmann S, Ohno K, Eulenburg V, Szoke K, Richter D, Betz H (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40(4):785–796

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56(1):29–36. doi:10.1001/archpsyc.56.1.29

    Article  PubMed  CAS  Google Scholar 

  • Inagawa K, Hiraoka T, Kohda T, Yamadera W, Takahashi M (2006) Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms 4:75–77. doi:10.1111/j.1479-8425.2006.00193.x

    Article  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151(8):1234–1236

    PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531. doi:10.1038/325529a0

    Article  PubMed  CAS  Google Scholar 

  • Juhasz G, Kekesi K, Emri Z, Soltesz I, Crunelli V (1990) Sleep-promoting action of excitatory amino acid antagonists: a different role for thalamic NMDA and non-NMDA receptors. Neurosci Lett 114(3):333–338

    Article  PubMed  CAS  Google Scholar 

  • Lamers Y, Williamson J, Gilbert LR, Stacpoole PW, Gregory JF 3rd (2007) Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1, 2-(13)C2]glycine and [(2)H3]leucine. J Nutr 137(12):2647–2652. pii:137/12/2647

    PubMed  CAS  Google Scholar 

  • Lin CH, Lane HY, Tsai GE (2011) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav. doi:10.1016/j.pbb.2011.03.023

  • Milasius AM, Grinevicius KK, Lapin IP (1990) Effect of quinolinic acid on wakefulness and sleep in the rabbit. J Neural Transm Gen Sect 82(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Moriki Y, Suzuki T, Fukami T, Hanano M, Tomono K, Watanabe J (2004) Involvement of P-glycoprotein in blood–brain barrier transport of pentazocine in rats using brain uptake index method. Biol Pharm Bull 27(6):932–935. doi:10.1248/bpb.27.932

    Article  PubMed  CAS  Google Scholar 

  • Noguchi Y, Zhang QW, Sugimoto T, Furuhata Y, Sakai R, Mori M, Takahashi M, Kimura T (2006) Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am J Clin Nutr 83(2):513S–519S. pii:83/2/513S

    PubMed  CAS  Google Scholar 

  • Oldendorf WH (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res 24(2):372–376. pii:0006-8993(70)90123-X

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221(6):1629–1639

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH (1975) Kinetic analysis of blood–brain barrier transport of amino acids. Biochim Biophys Acta 401(1):128–136. pii:0005-2736(75)90347-8

    Article  PubMed  CAS  Google Scholar 

  • Petzke KJ, Albrecht V, Przybilski H (1986) The influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats. J Nutr 116(5):742–750

    PubMed  CAS  Google Scholar 

  • Preston JE, Segal MB, Walley GJ, Zlokovic BV (1989) Neutral amino acid uptake by the isolated perfused sheep choroid plexus. J Physiol 408:31–43

    PubMed  CAS  Google Scholar 

  • Richter JJ, Wainer A (1971) Evidence for separate systems for the transport of neutral and basic amino acids across the blood–brain barrier. J Neurochem 18(4):613–620

    Article  PubMed  CAS  Google Scholar 

  • Saunders NR, Habgood MD, Dziegielewska KM (1999) Barrier mechanisms in the brain, I. Adult brain. Clin Exp Pharmacol Physiol 26(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Stone WS, Walker DL, Gold PE (1992) Sleep deficits in rats after NMDA receptor blockade. Physiol Behav 52(3):609–612. pii:0031-9384(92)90355-6

    Article  PubMed  CAS  Google Scholar 

  • Stutzmann JM, Lucas M, Blanchard JC, Laduron PM (1988) Riluzole, a glutamate antagonist, enhances slow wave and REM sleep in rats. Neurosci Lett 88(2):195–200

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Hayashi F, Nishikawa T (1997) In vivo evidence for the link between L- and D-serine metabolism in rat cerebral cortex. J Neurochem 69(3):1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Lajtha A (1981) Elevation of cerebral levels of nonessential amino acids in vivo by administration of large doses. Neurochem Res 6(12):1309–1317

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Lajtha A (1986) Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 11(3):393–400

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–179. doi:10.1146/annurev.pharmtox.42.082701.160735

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) d-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44(11):1081–1089. pii:S0006-3223(98)00279-0

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Lane HY, Yang P, Chong MY, Lange N (2004) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 55(5):452–456. doi:10.1016/j.biopsych.2003.09.012

    Article  PubMed  CAS  Google Scholar 

  • Tuominen HJ, Tiihonen J, Wahlbeck K (2005) Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 72(2–3):225–234. doi:10.1016/j.schres.2004.05.005

    Article  PubMed  Google Scholar 

  • Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E, Anders MW, Endou H (2002) Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol 61(4):729–737

    Article  PubMed  CAS  Google Scholar 

  • Verleysdonk S, Martin H, Willker W, Leibfritz D, Hamprecht B (1999) Rapid uptake and degradation of glycine by astroglial cells in culture: synthesis and release of serine and lactate. Glia 27(3):239–248. doi:10.1002/(SICI)1098-1136(199909)27:3<239:AID-GLIA5>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  • Wigren HK, Schepens M, Matto V, Stenberg D, Porkka-Heiskanen T (2007) Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience 147(3):811–823. doi:10.1016/j.neuroscience.2007.04.046

    Article  PubMed  CAS  Google Scholar 

  • Xue HH, Fujie M, Sakaguchi T, Oda T, Ogawa H, Kneer NM, Lardy HA, Ichiyama A (1999a) Flux of the l-serine metabolism in rat liver. The predominant contribution of serine dehydratase. J Biol Chem 274(23):16020–16027. doi:10.1074/jbc.274.23.16020

    Google Scholar 

  • Xue HH, Sakaguchi T, Fujie M, Ogawa H, Ichiyama A (1999b) Flux of the l-serine metabolism in rabbit, human, and dog livers. Substantial contributions of both mitochondrial and peroxisomal serine:pyruvate/alanine:glyoxylate aminotransferase. J Biol Chem 274 (23):16028–16033. doi:10.1074/jbc.274.23.16028

    Google Scholar 

  • Yamadera W, Inagawa K, Chiba S, Bannai M, Takahashi M, Namagawa K (2007) Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep Biol Rhythms 5:126–131. doi:10.1111/j.1479-8425.2007.00262.x

    Article  Google Scholar 

  • Zafra F, Gimenez C (2008) Glycine transporters and synaptic function. IUBMB Life 60(12):810–817. doi:10.1002/iub.128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Drs. Y. Urade and Z. Huang from Osaka Bioscience Institute for their valuable input.

Conflict of interest

Nobuhiro Kawai, Makoto Bannai, Shinobu Seki, Kenji Nagao and Michio Takahashi are employees of Ajinomoto Co., Inc. Tomonori Koizumi and Kenji Shinkai are employees of Ajinomoto Pharmaceuticals Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Bannai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, N., Bannai, M., Seki, S. et al. Pharmacokinetics and cerebral distribution of glycine administered to rats. Amino Acids 42, 2129–2137 (2012). https://doi.org/10.1007/s00726-011-0950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0950-y

Keywords

Navigation