Skip to main content

Advertisement

Log in

Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Non-steroidal anti-inflammatory drugs (NSAID) are used to alleviate pain sensations during orthodontic therapy but are also assumed to interfere with associated pseudo-inflammatory reactions. In particular, the effects of partially selective COX-2 inhibition over the constitutively expressed COX-1 (11:1) on periodontal cells and tissue, as induced by the NSAID meloxicam, remain unclear. We investigate possible adverse side-effects and potentially useful beneficial effects during orthodontic therapy and examine underlying cellular and tissue reactions. We randomly assigned 63 male Fischer344 rats to three consecutive experiments of 21 animals each (cone-beam computed tomography; histology/serology; reverse-transcription quantitative real-time polymerase chain reaction) in three experimental groups (n = 7; control; orthodontic tooth movement [OTM] of the first/second upper left molars [NiTi coil spring, 0.25 N]; OTM with a daily oral meloxicam dose of 3 mg/kg). In vitro, we stimulated human periodontal ligament fibroblasts (hPDL) with orthodontic pressure (2 g/cm2) with/without meloxicam (10 μM). In vivo, meloxicam significantly reduced serum C-reactive protein concentration, tooth movement velocity, orthodontically induced dentine root resorption (OIRR), osteoclast activity and the relative expression of inflammatory/osteoclast marker genes within the dental-periodontal tissue, while presenting good gastric tolerance. In vitro, we observed a corresponding significant decrease of prostaglandin E2/interleukin-6/RANKL(−OPG) expression and of hPDL-mediated osteoclastogenesis. By inhibiting prostaglandin synthesis, meloxicam seems to downregulate hPDL-mediated inflammation, RANKL-induced osteoclastogenesis and, consequently, tooth movement velocity by about 50%, thus limiting its suitability for analgesia during orthodontic therapy. However, its protective effects regarding OIRR and good tolerance profile suggest future prophylactic application, which merits its further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alikhani M, Alyami B, Lee IS, Almoammar S, Vongthongleur T, Alansari S, Sangsuwon C, Chou MY, Khoo E, Boskey A, Teixeira CC (2015) Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod Craniofac Res 18 (Suppl 1):8–17. doi:10.1111/ocr.12090

    Article  PubMed  Google Scholar 

  • Arias OR, Marquez-Orozco MC (2006) Aspirin, acetaminophen, and ibuprofen: their effects on orthodontic tooth movement. Am J Orthod Dentofac Orthop 130:364–370

    Article  Google Scholar 

  • Awasthi SS, Kumar TG, Manisha P, Preeti Y, Kumar SS (2011) Development of meloxicam formulations utilizing ternary complexation for solubility enhancement. Pak J Pharm Sci 24:533–538

    CAS  PubMed  Google Scholar 

  • Barka T, Anderson PJ (1962) Histochemical methods for acid phosphatase using hexazonium pararosanilian as coupler. J Histochem Cytochem 10:741–753

    Article  CAS  Google Scholar 

  • Baysal A, Uysal T, Ozdamar S, Kurt B, Kurt G, Gunhan O (2010) Comparisons of the effects of systemic administration of L-thyroxine and doxycycline on orthodontically induced root resorption in rats. Eur J Orthod 32:496–504

    Article  PubMed  Google Scholar 

  • Bezerra MM, Lima V de, Alencar VB, Vieira IB, Brito GA, Ribeiro RA, Rocha FA (2000) Selective cyclooxygenase-2 inhibition prevents alveolar bone loss in experimental periodontitis in rats. J Periodontol 71:1009–1014

  • Busch U, Schmid J, Heinzel G, Schmaus H, Baierl J, Huber C, Roth W (1998) Pharmacokinetics of meloxicam in animals and the relevance to humans. Drug Metab Dispos 26:576–584

    CAS  PubMed  Google Scholar 

  • Carlos F de, Cobo J, Perillan C, Garcia MA, Arguelles J, Vijande M, Costales M (2007) Orthodontic tooth movement after different coxib therapies. Eur J Orthod 29:596–599

  • Chuang S-K (2008) Meloxicam and tenoxicam exhibited a similar and well-tolerated efficacy for analgesic and anti-inflammatory effects. J Evid Based Dent Pract 8:244–245

    Article  PubMed  Google Scholar 

  • Clyne B, Olshaker JS (1999) The C-reactive protein. J Emerg Med 17:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Collin-Osdoby P, Yu X, Zheng H, Osdoby P (2003) RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Med 80:153–166

    CAS  PubMed  Google Scholar 

  • Czuszak CA, Sutherland DE, Billman MA, Stein SH (1996) Prostaglandin E2 potentiates interleukin-1 beta induced interleukin-6 production by human gingival fibroblasts. J Clin Periodontol 23:635–640

    Article  CAS  PubMed  Google Scholar 

  • Degner F, Heinzel G, Busch U (1994) Transsynovial kinetics of meloxicam. Scand J Rheumatol 23 (Suppl 98):121 [Abstract]

    Google Scholar 

  • Distel M, Mueller C, Bluhmki E, Fries J (1996) Safety of meloxicam: a global analysis of clinical trials. Br J Rheumatol 35 (Suppl 1):68–77

    Article  CAS  PubMed  Google Scholar 

  • Festing MFW, Overend P, Gaines Das R, Cortina-Borja M, Berdoy M (2002) The design of animal experiments. Reducing the use of animals in research through better experimental design. Laboratory animal handbooks, vol 14. The Royal Society of Medicine Press, London

    Google Scholar 

  • Fuenzalida M, Illanes J, Lemus R, Guerrero A, Oyarzun A, Acuna O, Lemus D (1999) Microscopic and histochemical study of odontoclasts in physiologic resorption of teeth of the polyphyodont lizard, Liolaemus gravenhorsti. J Morphol 242:295–309

    Article  CAS  PubMed  Google Scholar 

  • Gonzales C, Hotokezaka H, Matsuo K-I, Shibazaki T, Yozgatian JH, Darendeliler MA, Yoshida N (2009) Effects of steroidal and nonsteroidal drugs on tooth movement and root resorption in the rat molar. Angle Orthod 79:715–726

    Article  PubMed  Google Scholar 

  • Gurgel BC, Duarte PM, Nociti FH, Sallum EA, Casati MZ, Sallum AW, Toledo S (2004) Impact of an anti-inflammatory therapy and its withdrawal on the progression of experimental periodontitis in rats. J Periodontol 75:1613–1618

    Article  PubMed  Google Scholar 

  • Himi T, Yoshioka I, Kataura A (1997) Influence of age on the production of interleukin-8-like chemokine (GRO/CINC-1) in rat nasal mucosa. Eur Arch Otorhinolaryngol 254:101–104

    Article  CAS  PubMed  Google Scholar 

  • Iwase N, Higuchi T, Gonda T, Kobayashi H, Uetake H, Enomoto M, Sugihara K (2007) The effect of meloxicam, a selective COX-2 inhibitor, on the microvasculature of small metastatic liver tumors in rats. Jpn J Clin Oncol 37:673–678

    Article  PubMed  Google Scholar 

  • Jenkins WL (1987) Pharmacologic aspects of analgesic drugs in animals: an overview. J Am Vet Med Assoc 191:1231–1240

    CAS  PubMed  Google Scholar 

  • Jerome J, Brunson T, Takeoka G, Foster C, Moon HB, Grageda E, Zeichner-David M (2005) Celebrex offers a small protection from root resorption associated with orthodontic movement. J Calif Dent Assoc 33:951–959

    PubMed  Google Scholar 

  • Kameyama Y, Nakane S, Maeda H, Fujita K, Takesue M, Sato E (1994) Inhibitory effect of aspirin on root resorption induced by mechanical injury of the soft periodontal tissues in rats. J Periodontal Res 29:113–117

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220

    Article  CAS  PubMed  Google Scholar 

  • Karateev AE (2014) Meloxicam: the golden mean of nonsteroidal anti-inflammatory drugs. Ter Arkh 86:99–105

    CAS  PubMed  Google Scholar 

  • Kassem AA, Ismail FA, Naggar VF, Aboulmagd E (2014) Comparative study to investigate the effect of meloxicam or minocycline HCl in situ gel system on local treatment of periodontal pockets. AAPS PharmSciTech 15:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A (1996) The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin E2 synthesis and the degree and rate of orthodontic tooth movement. Angle Orthod 66:339–349

    CAS  PubMed  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirschneck C, Proff P, Fanghaenel J, Behr M, Wahlmann U, Roemer P (2013) Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging. Ann Anat 195:539–553

    Article  PubMed  Google Scholar 

  • Kirschneck C, Wolf M, Reicheneder C, Wahlmann U, Proff P, Roemer P (2014) Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats. Eur J Phamacol 744:67–75

    Article  CAS  Google Scholar 

  • Kirschneck C, Proff P, Maurer M, Reicheneder C, Römer P (2015) Orthodontic forces add to nicotine-induced loss of periodontal bone. An in vivo and in vitro study. J Orofac Orthop 76:195–212

    Article  PubMed  Google Scholar 

  • Kirschneck C, Proff P, Fanghänel J, Wolf M, Roldán JC, Römer P (2016) Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis. Ann Anat 204:93–105

    Article  PubMed  Google Scholar 

  • Kozawa O, Suzuki A, Tokuda H, Kaida T, Uematsu T (1998) Interleukin-6 synthesis induced by prostaglandin E2: cross-talk regulation by protein kinase C. Bone 22:355–360

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V (2007) Orthodontic pain: from causes to management—a review. Eur J Orthod 29:170–179

    Article  PubMed  Google Scholar 

  • Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lasfargues JJ, Saffar JL (1993) Inhibition of prostanoid synthesis depresses alveolar bone resorption but enhances root resorption in the rat. Anat Rec 237:458–465

    Article  CAS  PubMed  Google Scholar 

  • Lehmann HA, Baumeister M, Lützen L, Wiegleb J (1996) Meloxicam: a toxicology overview. Inflammopharmacology 4:105–123

    Article  CAS  Google Scholar 

  • Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  PubMed  Google Scholar 

  • Maltha JC, Leeuwen EJ van, Dijkman GEHM, Kuijpers-Jagtman AM (2004) Incidence and severity of root resorption in orthodontically moved premolars in dogs. Orthod Craniofac Res 7:115–121

  • Meghji S, Sandy JR, Scutt AM, Harvey W, Harris M (1988) Stimulation of bone resorption by lipoxygenase metabolites of arachidonic acid. Prostaglandins 36:139–149

    Article  CAS  PubMed  Google Scholar 

  • Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240

    Article  PubMed  Google Scholar 

  • Mitchell JA, Warner TD (2006) COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug Discov 5:75–86

    Article  CAS  PubMed  Google Scholar 

  • Moura AP, Taddei SRA, Queiroz-Junior CM, Madeira MFM, Rodrigues LFD, Garlet GP, Souza DG, Machado FS, Andrade I Jr, Teixeira MM, Silva TA (2014) The relevance of leukotrienes for bone resorption induced by mechanical loading. Bone 69:133–138

    Article  CAS  PubMed  Google Scholar 

  • Nassar CA, Nassar PO, Nassar PM, Spolidorio LC (2005) Selective cyclooxygenase-2 inhibition prevents bone resorption. Braz Oral Res 19:36–40

    Article  PubMed  Google Scholar 

  • Noble S, Balfour JA (1996) Meloxicam. Drugs 51:424–4320

  • Proff P, Römer P (2009) The molecular mechanism behind bone remodelling: a review. Clin Oral Investig 13:355–362

    Article  PubMed  Google Scholar 

  • Proff P, Reicheneder C, Faltermeier A, Kubein-Meesenburg D, Römer P (2014) Effects of mechanical and bacterial stressors on cytokine and growth-factor expression in periodontal ligament cells. J Orofac Orthop 75:191–202

    Article  CAS  PubMed  Google Scholar 

  • Rainsford KD, Ying C, Smith FC (1997) Effects of meloxicam, compared with other NSAIDs, on cartilage proteoglycan metabolism, synovial prostaglandin E2, and production of interleukins 1, 6 and 8, in human and porcine explants in organ culture. J Pharm Pharmacol 49:991–998

    Article  CAS  PubMed  Google Scholar 

  • Rajeswari SR, Gowda TM, Kumar TAB, Thimmasetty J, Mehta DS (2015) An appraisal of innovative meloxicam mucoadhesive films for periodontal postsurgical pain control: a double-blinded, randomized clinical trial of effectiveness. Contemp Clin Dent 6:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Maltha JC, Kuijpers-Jagtman AM (2007) Tooth movement characteristics in relation to root resorption in young and adult rats. Eur J Oral Sci 115:449–453

    Article  PubMed  Google Scholar 

  • Ross MH, Pawlina W (2011) Histology. A text and atlas: with correlated cell and molecular biology, 6th edn. Lippincott Williams & Wilkins, Philadelphia

  • Shu J, Qiu G, Ilyas M, Kaye P (2010) Biomarker detection in whole slide imaging based on statistical color models. In: MICCAI 2010 Workshop on Computational Imaging Biomarkers for Tumors: From Qualitative to Quantitative. 13th International Conference on Medical Image Computing and Computer Assisted Intervention, Beijing, China

  • Sodagar A, Etezadi T, Motahhary P, Dehpour AR, Vaziri H, Khojasteh A (2013) The effect of celecoxib on orthodontic tooth movement and root resorption in rat. J Dent (Tehran) 10:303–311

    Google Scholar 

  • Stokes WS (2015) Animals and the 3Rs in toxicology research and testing: the way forward. Hum Exp Toxicol 34:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Szabo S, Trier JS, Brown A, Schnoor J, Homan HD, Bradford JC (1985) A quantitative method for assessing the extent of experimental gastric erosions and ulcers. J Pharmacol Toxicol Methods 13:59–66

    CAS  Google Scholar 

  • Tong HH, Chen Y, Liu X, DeMaria TF (2008) Differential expression of cytokine genes and iNOS induced by nonviable nontypeable Haemophilus influenzae or its LOS mutants during acute otitis media in the rat. Int J Pediatr Otorhinolaryngol 72:1183–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Türck D, Roth W, Busch U (1996) A review of the clinical pharmacokinetics of meloxicam. Br J Rheumatol 35 (Suppl 1):13–16

    Article  PubMed  Google Scholar 

  • Venza M, Visalli M, Alafaci C, Caffo M, Caruso G, Salpietro FM, Tomasello F, Teti D (2011) Interleukin-8 overexpression in astrocytomas is induced by prostaglandin E2 and is associated with the transcription factors CCAAT/enhancer-binding protein-beta and CCAAT/enhancer-binding homologous protein. Neurosurgery 69:713–721

    Article  PubMed  Google Scholar 

  • Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I (2012) The weight of nations: an estimation of adult human biomass. BMC Public Health 12:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR (1999) Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A 96:7563–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf HF, Hassell TM (2006) Periodontology. Color atlas of dental hygiene. Thieme, Stuttgart

    Book  Google Scholar 

  • Yamaguchi M (2009) RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res 12:113–119

    Article  CAS  PubMed  Google Scholar 

  • Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A, Chaudhry AA, Rehman IU (2016) Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Mat Sci Eng 64:148–156

    Article  CAS  Google Scholar 

  • Yucel-Lindberg T, Båge T (2013) Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med 15:e7

    Article  PubMed  Google Scholar 

  • Zachariae CO (1993) Chemotactic cytokines and inflammation. Biological properties of the lymphocyte and monocyte chemotactic factors ELCF, MCAF and IL-8. Acta Derm Venereol Suppl (Stockh) 181:1–37

    CAS  Google Scholar 

  • Zarif Najafi H, Oshagh M, Salehi P, Babanouri N, Torkan S (2015) Comparison of the effects of preemptive acetaminophen, ibuprofen, and meloxicam on pain after separator placement: a randomized clinical trial. Prog Orthod 16:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Hughes B, King GJ (1997) Histomorphometric and biochemical study of osteoclasts at orthodontic compression sites in the rat during indomethacin inhibition. Arch Oral Biol 42:717–726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. med. dent. Michael Maurer and medical technical assistant Mrs. Eva Zaglauer for their contribution and assistance and the ReForM-A-research funding program of the Faculty of Medicine of the University of Regensburg (Kirschneck 03-31-2015) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kirschneck.

Ethics declarations

This work was performed and reported in accordance with the ethical standards of the institutional ethics committee (approval ID 12-170-0150) and the corresponding national authorities (approval ID 54–2532.1-46/13), the 1964 Helsinki declaration and its later amendments and comparable ethical standards including the obtaining of informed consent for the use of human material. All applicable international, national and/or institutional guidelines for the care and use of animals were followed, as were the Uniform Standards for manuscripts submitted to biomedical journals (ICMJE) and the official NC3Rs ARRIVE guidelines for the Reporting of In Vivo Experiments in Animal Research (Kilkenny et al. 2010).

Conflict of interest

The authors report no financial or other conflict of interest relevant to this article, which is the intellectual property of the authors. This paper has been approved by all authors and the affiliated institution. Furthermore, no part of this article has previously been published or is being considered for publication elsewhere. Some of the results, however, were used for the fulfilment of a scientific qualification by the author Matthias Meier in 2015. Control groups 1 and 2 (control/OTM) and corresponding results have been/are being used in other publications to minimize unnecessary animal suffering.

Funding source

This work was supported by a ReForM-A grant from the ReForM research funding programme of the Faculty of Medicine of the University of Regensburg, Germany (Kirschneck 03-31-2015).

Additional information

Chemical compound investigated (NCBI PubChem Compound database)

Meloxicam (PubChemCID: 54677470).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirschneck, C., Meier, M., Bauer, K. et al. Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue. Cell Tissue Res 368, 61–78 (2017). https://doi.org/10.1007/s00441-016-2553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2553-0

Keywords

Navigation