Skip to main content

Advertisement

Log in

Epigenetics in cardiac development, function, and disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Substantial new knowledge has accrued, over the past few years, concerning the epigenetic regulation of heart development and disease. Epigenetic mechanisms comprise DNA methylation, ATP-dependent chromatin remodeling, histone modifications, and non-coding RNAs. Many of these processes have been ascertained to influence the tight spatiotemporal control of gene expression during cardiac development. Nevertheless, the relative contribution of each mechanism and their potentially complex interplay remain largely unexplored. Cardiac development and disease are linked through the reactivation of fetal genes upon cardiac hypertrophy and failure. In cardiac disease, changes in gene expression are accompanied and influenced by distinct changes in histone modifications. Detailed knowledge about the epigenetic pathways of cardiac development and function is expected ultimately to lead to novel therapeutic strategies for heart disease and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Adamts1:

A disintegrin and metalloproteinase with thrombospondin motif

BAF:

BRG1/BRM-associated factor

Bmp10:

Bone morphogenetic protein 10

BRD:

Bromodomain

Brg1:

Brahma-related gene 1

Brm:

Brahma

CHD:

Chromodomain helicase DNA binding

Ctcf:

CCCTC-binding factor

Dnmt:

DNA methyltransferase

Dot1l:

DOT1-like histone H3 methyltransferase

Dpf3:

D4 zinc and double PHD fingers, family 3

Dux4:

Double homeobox 4

Ezh2:

Enhancer of zeste homolog 2

Fhl1:

Four-and-a-half LIM domains 1

Gata4:

GATA-binding protein 4

HAT:

Histone acetyltransferase

Hdac:

Histone deacteylase

Hp1:

Heterochromatin protein 1

INO80:

Inositol requiring 80

ISWI:

Imitation switch

Jmjd3:

Jumonji-domain-containing 3 histone lysine demethylase 3

Kap1:

Kinesin-II-associated protein

Kdm4a:

Lysine (K)-specific demethylase 4A

Lsd1:

Lysine (K)-specific demethylase 1A

MBD:

Methyl-CpG-binding domain

Mef2a,c:

Myocyte enhancer factor 2A,C

Myh6:

α-Myosin heavy chain

Myh7:

β-Myosin heavy chain

MYST:

Moz Ybf2/Sas3, Sas2, Tip60

NCoR:

Nuclear receptor corepressor

Nkx2-5:

NK2 homeobox 5

Nppa:

Atrial natriuretic peptide ANP

Nppb:

Brain natriuretic peptide BNP

NURD:

Nucleosome remodeling and histone deacetylase

Parp-1:

Poly (ADP-ribose) polymerase 1

PBAF:

Polybromo Brg1-associated factors

PRC2:

Polycomb repressive complex 2

SET:

Su(var)3–9 enhancer of zeste, trithorax

Sir2:

Silent information regulator-2

Six1:

Homeobox protein SIX1

Smarca:

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member

Smrt:

Silencing mediator of retinoic acid and thyroid hormone receptor

Smyd1:

SET and MYND domain containing 1

SNPs:

Single nucleotide polymorphisms

SRA:

SET and ring-associated

Suv39h1:

Suppressor of variegation 3–9 homolog 1

SWI/SNF:

Switching defective/sucrose nonfermenting

Tet:

Ten-eleven translocation methylcytosine dioxygenase

Tnnt2:

Cardiac troponin T type 2

Uhrf1,2:

Ubiquitin-like with PHD and ring finger domain 1,2

Utx:

Ubiquitously transcribed tetratricopeptide repeat X chromosome

Whsc1:

Wolf-Hirschhorn syndrome candidate 1

Wnt5a:

Wingless-related MMTV integration site 5A

Zbtb:

Zinc finger and BTB domain containing

Zfp57:

ZFP57 zinc finger protein

References

  • Aggarwal VS, Morrow BE (2008) Genetic modifiers of the physical malformations in velo-cardio-facial syndrome/DiGeorge syndrome. Dev Disabil Res Rev 14:19–25

    PubMed Central  PubMed  Google Scholar 

  • Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, Cappola TP, Lemieux M, Plutzky J, Bradner JE, Haldar SM (2013) BET bromodomains mediate transcriptional pause release in heart failure. Cell 154:569–582

    CAS  PubMed  Google Scholar 

  • Awad S, Kunhi M, Little GH, Bai Y, An W, Bers D, Kedes L, Poizat C (2013) Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res 41:7656–7672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116:1853–1864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L, Heft C, Katus HA, Olson EN (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195:403–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballestar E, Wolffe AP (2001) Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem 268:1–6

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436:1103–1106

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baubec T, Ivanek R, Lienert F, Schubeler D (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153:480–492

    CAS  PubMed  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP (2005) Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet 14:3463–3476

    CAS  PubMed  Google Scholar 

  • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    CAS  Google Scholar 

  • Buck-Koehntop BA, Defossez PA (2013) On how mammalian transcription factors recognize methylated DNA. Epigenetics 8:131–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, Magnuson T (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6:1287–1295

    CAS  PubMed  Google Scholar 

  • Chandler RL, Brennan J, Schisler JC, Serber D, Patterson C, Magnuson T (2013) ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol 33:265–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang CP, Bruneau BG (2012) Epigenetics and cardiovascular development. Annu Rev Physiol 74:41–68

    CAS  PubMed  Google Scholar 

  • Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334

    CAS  PubMed  Google Scholar 

  • Chen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA, Baldini A (2012a) Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet 8:e1002571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Ma Y, Kim EY, Yu W, Schwartz RJ, Qian L, Wang J (2012b) Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival. PLoS One 7:e31005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu GL, Rots MG (2013) Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42:1563–1574

    PubMed Central  PubMed  Google Scholar 

  • Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100:10794–10799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS (2010) Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics 11:519

    PubMed Central  PubMed  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    CAS  PubMed  Google Scholar 

  • Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi SW, Page DC, Jaenisch R (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9:166–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502:499–506

    PubMed  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG (2012) Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 44:343–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feldmann A, Ivanek R, Murr R, Gaidatzis D, Burger L, Schubeler D (2013) Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet 9:e1003994

    PubMed Central  PubMed  Google Scholar 

  • Fisher JB, Kim MS, Blinka S, Ge ZD, Wan T, Duris C, Christian D, Twaroski K, North P, Auchampach J, Lough J (2012) Stress-induced cell-cycle activation in Tip60 haploinsufficient adult cardiomyocytes. PLoS One 7:e31569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang Z (2008) ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci U S A 105:6656–6661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, Nakagawa O, Srivastava D (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31:25–32

    CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    CAS  PubMed  Google Scholar 

  • Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabo PE, Pfeifer GP, Li J, Xu GL (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610

    CAS  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–6101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 5:413–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haberland M, Mokalled MH, Montgomery RL, Olson EN (2009a) Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23:1625–1630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009b) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    CAS  PubMed  Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954

    CAS  PubMed  Google Scholar 

  • Han P, Hang CT, Yang J, Chang CP (2011) Chromatin remodeling in cardiovascular development and physiology. Circ Res 108:378–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, Zhang B, Hsing M, Christodoulou DC, Cahan P, Daley GQ, Kong SW, Orkin SH, Seidman CE, Seidman JG, Pu WT (2012a) Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res 110:406–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • He A, Shen X, Ma Q, Cao J, von Gise A, Zhou P, Wang G, Marquez VE, Orkin SH, Pu WT (2012b) PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev 26:37–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J, Maack C (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123:1359–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45:1198–1206

    CAS  PubMed  Google Scholar 

  • Hu Y, Fisher JB, Koprowski S, McAllister D, Kim MS, Lough J (2009) Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev Dyn 238:2912–2921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurd EA, Capers PL, Blauwkamp MN, Adams ME, Raphael Y, Poucher HK, Martin DM (2007) Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome 18:94–104

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    CAS  PubMed  Google Scholar 

  • Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, Gonzalo S, Zhang Y, Li E, Chen T (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4:e1000190

    PubMed Central  PubMed  Google Scholar 

  • Jung J, Kim TG, Lyons GE, Kim HR, Lee Y (2005) Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem 280:30916–30923

    CAS  PubMed  Google Scholar 

  • Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45:592–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeser MD, Aslanian A, Dong M-Q, Yates JR 3rd, Emerson BM (2008) BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 283:32254–32263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TG, Chen J, Sadoshima J, Lee Y (2004) Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol Cell Biol 24:10151–10160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TG, Jung J, Mysliwiec MR, Kang S, Lee Y (2005) Jumonji represses alpha-cardiac myosin heavy chain expression via inhibiting MEF2 activity. Biochem Biophys Res Commun 329:544–553

    CAS  PubMed  Google Scholar 

  • Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lange M, Kaynak B, Forster UB, Tonjes M, Fischer JJ, Grimm C, Schlesinger J, Just S, Dunkel I, Krueger T, Mebus S, Lehrach H, Lurz R, Gobom J, Rottbauer W, Abdelilah-Seyfried S, Sperling S (2008) Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22:2370–2384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135:193–205

    CAS  PubMed  Google Scholar 

  • Lee Y, Song AJ, Baker R, Micales B, Conway SJ, Lyons GE (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 86:932–938

    CAS  PubMed  Google Scholar 

  • Lee S, Lee JW, Lee SK (2012) UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell 22:25–37

    CAS  PubMed  Google Scholar 

  • Lei I, Gao X, Sham MH, Wang Z (2012) SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. J Biol Chem 287:24255–24262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    CAS  PubMed  Google Scholar 

  • Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, Yang FC, Xu M (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118:4509–4518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang P, Song F, Ghosh S, Morien E, Qin M, Mahmood S, Fujiwara K, Igarashi J, Nagase H, Held WA (2011) Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics 12:231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:107–112

    CAS  PubMed  Google Scholar 

  • Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu Z, Scott I, Webster BR, Sack MN (2009) The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology. Circ Res 105:830–841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung JK (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142

    CAS  PubMed  Google Scholar 

  • Maillet M, van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14:38–48

    CAS  PubMed  Google Scholar 

  • Marmorstein R (2001) Structure of histone acetyltransferases. J Mol Biol 311:433–444

    CAS  PubMed  Google Scholar 

  • Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie LH, Tian B, Sadoshima J (2013) Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res 112:651–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112:711–723

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, Matsumori A, Nishio R, Kita T, Hasegawa K (2006) Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 113:679–690

    CAS  PubMed  Google Scholar 

  • Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN (2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118:3588–3597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118:868–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329

    CAS  PubMed  Google Scholar 

  • Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett MR, Foo RS (2011) Distinct epigenomic features in end-stage failing human hearts. Circulation 124:2411–2422

    PubMed Central  PubMed  Google Scholar 

  • Narayan N, Lee IH, Borenstein R, Sun J, Wong R, Tong G, Fergusson MM, Liu J, Rovira II, Cheng HL, Wang G, Gucek M, Lombard D, Alt FW, Sack MN, Murphy E, Cao L, Finkel T (2012) The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 492:199–204

    CAS  PubMed  Google Scholar 

  • Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, Wang DZ, Xiao X, Zhang Y (2011) DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 25:263–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholson TB, Singh AK, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Goetschkes M, Capodieci P, Loureiro J, Cheng X, Li E, Kinzel B, Labow M, Chen T (2013) A hypomorphic lsd1 allele results in heart development defects in mice. PLoS One 8:e60913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 460:287–291

    CAS  PubMed  Google Scholar 

  • Nishita M, Enomoto M, Yamagata K, Minami Y (2010) Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol 20:346–354

    CAS  PubMed  Google Scholar 

  • North BJ, Verdin E (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5:224

    PubMed Central  PubMed  Google Scholar 

  • Ohtani K, Zhao C, Dobreva G, Manavski Y, Kluge B, Braun T, Rieger MA, Zeiher AM, Dimmeler S (2013) Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res 113:856–862

    CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    CAS  PubMed  Google Scholar 

  • Olson EN (2004) A decade of discoveries in cardiac biology. Nat Med 10:467–474

    CAS  PubMed  Google Scholar 

  • Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927

    CAS  PubMed  Google Scholar 

  • Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8:544–554

    CAS  PubMed  Google Scholar 

  • Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, Vigano V, Stirparo GG, Latronico MV, Hasenfuss G, Chen J, Condorelli G (2013) Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 110:20164–20169

    CAS  PubMed  Google Scholar 

  • Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    CAS  PubMed  Google Scholar 

  • Pillai JB, Isbatan A, Imai S, Gupta MP (2005a) Poly (ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280:43121–43130

    CAS  PubMed  Google Scholar 

  • Pillai JB, Russell HM, Raman J, Jeevanandam V, Gupta MP (2005b) Increased expression of poly(ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. Am J Physiol Heart Circ Physiol 288:H486–H496

    CAS  PubMed  Google Scholar 

  • Pillai JB, Gupta M, Rajamohan SB, Lang R, Raman J, Gupta MP (2006) Poly (ADP-ribose) polymerase-1-deficient mice are protected from angiotensin II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 291:H1545–H1553

    CAS  PubMed  Google Scholar 

  • Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH, van Lohuizen M, Peters AH (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40:411–420

    CAS  PubMed  Google Scholar 

  • Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    CAS  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    CAS  PubMed  Google Scholar 

  • Rottbauer W, Saurin AJ, Lickert H, Shen X, Burns CG, Wo ZG, Kemler R, Kingston R, Wu C, Fishman M (2002) Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 111:661–672

    CAS  PubMed  Google Scholar 

  • Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994

    CAS  PubMed  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    CAS  PubMed  Google Scholar 

  • Sheikh F, Raskin A, Chu PH, Lange S, Domenighetti AA, Zheng M, Liang X, Zhang T, Yajima T, Gu Y, Dalton ND, Mahata SK, Dorn GW 2nd, Brown JH, Peterson KL, Omens JH, McCulloch AD, Chen J (2008) An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest 118:3870–3880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shikama N, Lutz W, Kretzschmar R, Sauter N, Roth JF, Marino S, Wittwer J, Scheidweiler A, Eckner R (2003) Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J 22:5175–5185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh AP, Archer TK (2013) Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation. Nucleic Acids Res 42:2958–2975

    PubMed Central  PubMed  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    CAS  PubMed  Google Scholar 

  • Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495

    CAS  PubMed  Google Scholar 

  • Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, Shang C, Bayle JH, Shou W, Iruela-Arispe ML, Chang CP (2008) Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14:298–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stopka T, Skoultchi AI (2003) The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci U S A 100:14097–14102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18:1643–1650

    CAS  PubMed  Google Scholar 

  • Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:708–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi T, Kojima M, Nakajima K, Kondo S (1999) Jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech Dev 86:29–38

    CAS  PubMed  Google Scholar 

  • Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguin P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y, Zhou YQ, Yeh RF, Henkelman RM, Harvey RP, Metzger D, Chambon P, Stainier DY, Pollard KS, Scott IC, Bruneau BG (2011) Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun 2:187

    PubMed Central  PubMed  Google Scholar 

  • Tan X, Rotllant J, Li H, De Deyne P, Du SJ (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103:2713–2718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toyoda M, Shirato H, Nakajima K, Kojima M, Takahashi M, Kubota M, Suzuki-Migishima R, Motegi Y, Yokoyama M, Takeuchi T (2003) Jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Dev Cell 5:85–97

    CAS  PubMed  Google Scholar 

  • Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331

    CAS  PubMed  Google Scholar 

  • Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710

    CAS  PubMed  Google Scholar 

  • van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 123:37–45

    PubMed Central  PubMed  Google Scholar 

  • Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566

    CAS  PubMed  Google Scholar 

  • Voss AK, Vanyai HK, Collin C, Dixon MP, McLennan TJ, Sheikh BN, Scambler P, Thomas T (2012) MOZ regulates the Tbx1 locus, and Moz mutation partially phenocopies DiGeorge syndrome. Dev Cell 23:652–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh S, Ponten A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–373

    CAS  PubMed  Google Scholar 

  • Wang Z, Zhai W, Richardson JA, Olson EN, Meneses JJ, Firpo MT, Kang C, Skarnes WC, Tjian R (2004) Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev 18:3106–3116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, Liu F, Taylor H, Lozach J, Jayes FL, Korach KS, Glass CK, Fu XD, Rosenfeld MG (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446:882–887

    CAS  PubMed  Google Scholar 

  • Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA, Jaenisch R (2012) X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci U S A 109:13004–13009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45–68

    CAS  PubMed  Google Scholar 

  • Xiao CY, Chen M, Zsengeller Z, Li H, Kiss L, Kollai M, Szabo C (2005) Poly (ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 312:891–898

    CAS  PubMed  Google Scholar 

  • Xie L, Weichel B, Ohm JE, Zhang K (2011) An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. BMC Syst Biol 5 (Suppl 3):S4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xin M, Olson EN, Bassel-Duby R (2013) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 14:529–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED, Wang W (2000) The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci U S A 97:13015–13020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan Z, Cui K, Murray DM, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K, Wang W (2005) PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev 19:1662–1667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanazume T, Hasegawa K, Morimoto T, Kawamura T, Wada H, Matsumori A, Kawase Y, Hirai M, Kita T (2003) Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 23:3593–3606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XJ, Seto E (2003) Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev 13:143–153

    CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao TP, Oh SP, Fuchs M, Zhou ND, Ch'ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372

    CAS  PubMed  Google Scholar 

  • Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21:564–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488

    CAS  PubMed  Google Scholar 

  • Zhang R, Khoo MS, Wu Y, Yang Y, Grueter CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS, Madu EC, Shah AN, Vishnivetskaya TA, Atkinson JB, Gurevich VV, Salama G, Lederer WJ, Colbran RJ, Anderson ME (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11:409–417

    CAS  PubMed  Google Scholar 

  • Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, Lombard D, Mizeracki A, Matthias G, Alt FW, Khochbin S, Matthias P (2008) Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 28:1688–1701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP (2011) The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 121:2447–2456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Wu CT, Qi X, Meijering RA, Hoogstra-Berends F, Tadevosyan A, Cubukcuoglu Deniz G, Durdu S, Akar AR, Sibon OC, Nattel S, Henning RH, Brundel BJ (2014) Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 129:346–358

    CAS  PubMed  Google Scholar 

  • Zhou HZ, Swanson RA, Simonis U, Ma X, Cecchini G, Gray MO (2006) Poly (ADP-ribose) polymerase-1 hyperactivation and impairment of mitochondrial respiratory chain complex I function in reperfused mouse hearts. Am J Physiol Heart Circ Physiol 291:H714–H723

    CAS  PubMed  Google Scholar 

  • Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Hein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nührenberg, T., Gilsbach, R., Preissl, S. et al. Epigenetics in cardiac development, function, and disease. Cell Tissue Res 356, 585–600 (2014). https://doi.org/10.1007/s00441-014-1887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1887-8

Keywords

Navigation