Skip to main content

Advertisement

Log in

Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Transforming growth factor-β (TGF-β) is a ubiquitous cytokine playing an essential role in cell proliferation, differentiation, apoptosis, adhesion and invasion, as well as in cellular microenvironment. In malignant diseases, TGF-β signaling features a growth inhibitory effect at an early stage but aggressive oncogenic activity at the advanced malignant state. Here, we update the current understanding of TGF-β signaling in cancer development and progression with a focus on breast cancer. We also review the current approaches of TGF-β signaling-targeted therapeutics for human malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAF:

Carcinoma-associated fibroblasts

EMT:

Epithelial-mesenchymal transition

CdGAP:

Cdc42 GTPase-activating protein

MEC:

Mammary epithelial cell

DMR:

DNA mismatch repair

MSC:

Mesenchymal stem cell

PRD:

Proline-rich domain

PTK:

Protein tyrosine kinase

RANKL:

Receptor activator of NF-κB ligand

TGF-β:

Transforming growth factor-β

TβRI:

Type I TGF-β receptor

TβRII:

Type II TGF-β receptor

VEGF:

Vascular endothelial growth factor

References

  • Abe F, Dafferner AJ, Donkor M, Westphal SN, Scholar EM, Solheim JC, Singh RK, Hoke TA, Talmadge JE (2010) Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice. Cancer Immunol Immunother 59:47–62

    PubMed  CAS  Google Scholar 

  • Ajiboye S, Sissung TM, Sharifi N, Figg WD (2010) More than an accessory: implications of type III transforming growth factor-beta receptor loss in prostate cancer. BJU Int 105:913–916

    PubMed  CAS  Google Scholar 

  • Allington TM, Schiemann WP (2011) The Cain and Abl of epithelial-mesenchymal transition and transforming growth factor-beta in mammary epithelial cells. Cells Tissues Organs 193:98–113

    PubMed  CAS  Google Scholar 

  • Allington TM, Galliher-Beckley AJ, Schiemann WP (2009) Activated Abl kinase inhibits oncogenic transforming growth factor-beta signaling and tumorigenesis in mammary tumors. FASEB J 23:4231–4243

    PubMed  CAS  Google Scholar 

  • Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD (2010) TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest 120:290–302

    PubMed  CAS  Google Scholar 

  • Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 92:2569–2576

    PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647

    PubMed  CAS  Google Scholar 

  • Band AM, Laiho M (2011) Crosstalk of TGF-beta and Estrogen Receptor Signaling in Breast Cancer. J Mammary Gland Biol Neoplasia

  • Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM, Cornell JE, Pollock BH, Mundy GR, Sun LZ (2006) Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res 66:6714–6721

    PubMed  CAS  Google Scholar 

  • Bauer JA, Ye F, Marshall CB, Lehmann BD, Pendleton CS, Shyr Y, Arteaga CL, Pietenpol JA (2010) RNA interference (RNAi) screening approach identifies agents that enhance paclitaxel activity in breast cancer cells. Breast Cancer Res 12:R41

    PubMed  Google Scholar 

  • Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, Aakre M, Shyr Y, Moses HL (2009) Abrogation of TGF-beta signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest 119:1571–1582

    PubMed  CAS  Google Scholar 

  • Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW (2010) Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 15:235–252

    PubMed  Google Scholar 

  • Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S et al (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39:1315–1317

    PubMed  CAS  Google Scholar 

  • Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, Troconiz IF (2008) Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer 44:142–150

    PubMed  CAS  Google Scholar 

  • Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, ten Dijke P, van der Pluijm G (2007) TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 24:609–617

    PubMed  CAS  Google Scholar 

  • Caja L, Ortiz C, Bertran E, Murillo MM, Miro-Obradors MJ, Palacios E, Fabregat I (2007) Differential intracellular signalling induced by TGF-beta in rat adult hepatocytes and hepatoma cells: implications in liver carcinogenesis. Cell Signal 19:683–694

    PubMed  CAS  Google Scholar 

  • Calvo-Aller E, Baselga J, Glatt S, Cleverly A, Lahn M, Arteaga CL, Rothenberg ML, Carducci MA (2008) First human dose escalation study in patients with metastatic malignancies to determine safety and pharmacokinetics of LY2157299, a small molecule inhibitor of the transforming growth factor-β receptor I kinase. J Clin Oncol 26:14554

    Google Scholar 

  • Carano R, Li Y, Bao M, Li J, Berry L, Ross J, Kowalski J, French D, Dugger D, Schwall R et al (2004) Effect of anti-TGF-beta antibodies in syngeneic mouse models of metastasis. J Musculoskelet Neuronal Interact 4:377–378

    PubMed  CAS  Google Scholar 

  • Casey TM, Eneman J, Crocker A, White J, Tessitore J, Stanley M, Harlow S, Bunn JY, Weaver D, Muss H et al (2008) Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: a population study. Breast Cancer Res Treat 110:39–49

    PubMed  CAS  Google Scholar 

  • Cheng N, Chytil A, Shyr Y, Joly A, Moses HL (2008) Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res 6:1521–1533

    PubMed  CAS  Google Scholar 

  • Criswell TL, Dumont N, Barnett JV, Arteaga CL (2008) Knockdown of the transforming growth factor-beta type III receptor impairs motility and invasion of metastatic cancer cells. Cancer Res 68:7304–7312

    PubMed  CAS  Google Scholar 

  • Cucina A, Proietti S, D'Anselmi F, Coluccia P, Dinicola S, Frati L, Bizzarri M (2009) Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res 46:172–180

    PubMed  CAS  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    PubMed  CAS  Google Scholar 

  • Donkor MK, Lahue E, Hoke TA, Shafer LR, Coskun U, Solheim JC, Gulen D, Bishay J, Talmadge JE (2009) Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol 9:937–948

    PubMed  CAS  Google Scholar 

  • Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, Ishikawa Y, Nomura K, Yokoo H, Shimizu T et al (2007) Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 98:127–133

    PubMed  CAS  Google Scholar 

  • Feng XH, Liang YY, Liang M, Zhai W, Lin X (2002) Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 9:133–143

    PubMed  CAS  Google Scholar 

  • Figueroa JD, Flanders KC, Garcia-Closas M, Anderson WF, Yang XR, Matsuno RK, Duggan MA, Pfeiffer RM, Ooshima A, Cornelison R et al (2010) Expression of TGF-beta signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics. Breast Cancer Res Treat 121:727–735

    PubMed  CAS  Google Scholar 

  • Futakuchi M, Nannuru KC, Varney ML, Sadanandam A, Nakao K, Asai K, Shirai T, Sato SY, Singh RK (2009) Transforming growth factor-beta signaling at the tumor-bone interface promotes mammary tumor growth and osteoclast activation. Cancer Sci 100:71–81

    PubMed  CAS  Google Scholar 

  • Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, Lonning S, McPherson J, Yingling JM, Biswas S et al (2010) Targeting the Transforming Growth Factor-beta pathway inhibits human basal-like breast cancer metastasis. Mol Cancer 9:122

    PubMed  Google Scholar 

  • Gauger KJ, Chenausky KL, Murray ME, Schneider SS (2011) SFRP1 reduction results in an increased sensitivity to TGF-beta signaling. BMC Cancer 11:59

    PubMed  CAS  Google Scholar 

  • Gentry LE, Lioubin MN, Purchio AF, Marquardt H (1988) Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol 8:4162–4168

    PubMed  CAS  Google Scholar 

  • Giehl K, Imamichi Y, Menke A (2007) Smad4-independent TGF-beta signaling in tumor cell migration. Cells Tissues Organs 185:123–130

    PubMed  CAS  Google Scholar 

  • Glasgow E, Mishra L (2008) Transforming growth factor-beta signaling and ubiquitinators in cancer. Endocr Relat Cancer 15:59–72

    PubMed  CAS  Google Scholar 

  • Glinka Y, Prud'homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84:302–310

    PubMed  CAS  Google Scholar 

  • Glinka Y, Stoilova S, Mohammed N, Prud'homme GJ (2010) Neuropilin-1 exerts coreceptor function for TGF-beta-1 on the membrane of cancer cells and enhances responses to both latent and active TGF-beta. Carcinogenesis (in press)

  • Gobbi H, Dupont WD, Simpson JF, Plummer WD Jr, Schuyler PA, Olson SJ, Arteaga CL, Page DL (1999) Transforming growth factor-beta and breast cancer risk in women with mammary epithelial hyperplasia. J Natl Cancer Inst 91:2096–2101

    PubMed  CAS  Google Scholar 

  • Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ, Schuyler PA, Plummer WD Jr, Page DL (2000) Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in-situ and invasive carcinomas. Histopathology 36:168–177

    PubMed  CAS  Google Scholar 

  • Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181

    PubMed  CAS  Google Scholar 

  • Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL (2003) Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 163:1539–1549

    PubMed  CAS  Google Scholar 

  • Grau AM, Wen W, Ramroopsingh DS, Gao YT, Zi J, Cai Q, Shu XO, Zheng W (2008) Circulating transforming growth factor-beta-1 and breast cancer prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 112:335–341

    PubMed  CAS  Google Scholar 

  • Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153–2160

    PubMed  CAS  Google Scholar 

  • He Y, Northey JJ, Primeau M, Machado RD, Trembath R, Siegel PM, Lamarche-Vane N (2011) CdGAP is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Oncogene 30:1032–1045

    PubMed  CAS  Google Scholar 

  • Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21:166–176

    PubMed  CAS  Google Scholar 

  • Henry L, Johnson D, Lee S, Quinlan P, Crook T, Thompson A, Reis-Filho J, Isacke C (2010) Transforming growth factor-beta co-receptor endoglin suppresses breast cancer invasion and metastasis. Breast Cancer Res 12(Suppl 1):O6

    PubMed  Google Scholar 

  • Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485

    PubMed  CAS  Google Scholar 

  • Hoshino Y, Katsuno Y, Ehata S, Miyazono K (2011) Autocrine TGF-beta protects breast cancer cells from apoptosis through reduction of BH3-only protein, Bim. J Biochem 149:55–65

    PubMed  CAS  Google Scholar 

  • Hu Z, Zhang Z, Guise T, Seth P (2010) Systemic delivery of an oncolytic adenovirus expressing soluble transforming growth factor-beta receptor II-Fc fusion protein can inhibit breast cancer bone metastasis in a mouse model. Hum Gene Ther 21:1623–1629

    PubMed  CAS  Google Scholar 

  • Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424

    PubMed  CAS  Google Scholar 

  • Inman GJ (2011) Switching TGFbeta from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev 21:93–99

    PubMed  CAS  Google Scholar 

  • Ivanovic V, Dedovic-Tanic N, Milovanovic Z, Lukic S, Nikolic S, Baltic V, Stojiljkovic B, Budisin N, Savovski K, Demajo M et al (2009) Quantification of transforming growth factor beta 1 levels in metastatic axillary lymph node tissue extracts from breast cancer patients: a new specimen source. Anal Quant Cytol Histol 31:288–295

    PubMed  Google Scholar 

  • Jain P, Alahari SK (2011) Breast cancer stem cells: a new challenge for breast cancer treatment. Front Biosci 16:1824–1832

    PubMed  CAS  Google Scholar 

  • Jakowlew SB (2006) Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25:435–457

    PubMed  CAS  Google Scholar 

  • Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, Donovan M, Cordon-Cardo C, Beug H, Grunert S (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116:1561–1570

    PubMed  CAS  Google Scholar 

  • Joffroy CM, Buck MB, Stope MB, Popp SL, Pfizenmaier K, Knabbe C (2010) Antiestrogens induce transforming growth factor beta-mediated immunosuppression in breast cancer. Cancer Res 70:1314–1322

    PubMed  CAS  Google Scholar 

  • Johnson RW, Nguyen MP, Padalecki SS, Grubbs BG, Merkel AR, Oyajobi BO, Matrisian LM, Mundy GR, Sterling JA (2011) TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling. Cancer Res 71:822–831

    PubMed  CAS  Google Scholar 

  • Joshi A, Cao D (2010) TGF-beta signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci 15:180–194

    PubMed  CAS  Google Scholar 

  • Juarez P, Guise TA (2010) Tgf-Beta pathway as a therapeutic target in bone metastases. Curr Pharm Des 16:1301–1312

    PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    PubMed  CAS  Google Scholar 

  • Kelly RJ, Morris JC (2010) Transforming growth factor-beta: a target for cancer therapy. J Immunotoxicol 7:15–26

    PubMed  CAS  Google Scholar 

  • Kelly RJ, Morris JC (2011) Transforming growth factor-beta: a target for cancer therapy. J Immunotoxicol 7:15–26

    Google Scholar 

  • Kim KY, Jeong SY, Won J, Ryu PD, Nam MJ (2001) Induction of angiogenesis by expression of soluble type II transforming growth factor-beta receptor in mouse hepatoma. J Biol Chem 276:38781–38786

    PubMed  CAS  Google Scholar 

  • Kim YW, Kim YK, Lee JY, Chang KT, Lee HJ, Kim DK, Sheen YY (2008) Pharmacokinetics and tissue distribution of 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl)methyl)benzamide; a novel ALK5 inhibitor and a potential anti-fibrosis drug. Xenobiotica 38:325–339

    PubMed  Google Scholar 

  • Kleuser B, Malek D, Gust R, Pertz HH, Potteck H (2008) 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30. Mol Pharmacol 74:1533–1543

    PubMed  CAS  Google Scholar 

  • Klopfleisch R, Schutze M, Gruber AD (2010) Downregulation of transforming growth factor beta (TGFbeta) and latent TGFbeta binding protein (LTBP)-4 expression in late stage canine mammary tumours. Vet J 186:379–384

    PubMed  CAS  Google Scholar 

  • Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107:20009–20014

    PubMed  CAS  Google Scholar 

  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784

    PubMed  CAS  Google Scholar 

  • Lee JD, Hempel N, Lee NY, Blobe GC (2010) The type III TGF-beta receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-beta signaling. Carcinogenesis 31:175–183

    PubMed  CAS  Google Scholar 

  • Lenferink AE, Cantin C, Nantel A, Wang E, Durocher Y, Banville M, Paul-Roc B, Marcil A, Wilson MR, O'Connor-McCourt MD (2010) Transcriptome profiling of a TGF-beta-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies. Oncogene 29:831–844

    PubMed  CAS  Google Scholar 

  • Li H, Han Y, Guo Q, Zhang M, Cao X (2009a) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249

    PubMed  CAS  Google Scholar 

  • Li H, Sekine M, Seng S, Avraham S, Avraham HK (2009b) BRCA1 interacts with Smad3 and regulates Smad3-mediated TGF-beta signaling during oxidative stress responses. PLoS One 4:e7091

    PubMed  Google Scholar 

  • Li J, Zhu H, Chen T, Dai G, Zou L (2011) TGF-beta1 and BRCA2 Expression are Associated with Clinical Factors in Breast Cancer. Cell Biochem Biophys (in press)

  • Llopiz D, Dotor J, Casares N, Bezunartea J, Diaz-Valdes N, Ruiz M, Aranda F, Berraondo P, Prieto J, Lasarte JJ et al (2009) Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy. Int J Cancer 125:2614–2623

    PubMed  CAS  Google Scholar 

  • Malliri A, Yeudall WA, Nikolic M, Crouch DH, Parkinson EK, Ozanne B (1996) Sensitivity to transforming growth factor beta 1-induced growth arrest is common in human squamous cell carcinoma cell lines: c-MYC down-regulation and p21waf1 induction are important early events. Cell Growth Differ 7:1291–1304

    PubMed  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    PubMed  CAS  Google Scholar 

  • Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    PubMed  CAS  Google Scholar 

  • Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    PubMed  CAS  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    PubMed  CAS  Google Scholar 

  • Matsuura I, Lai CY, Chiang KN (2010) Functional interaction between Smad3 and S100A4 (metastatin-1) for TGF-beta-mediated cancer cell invasiveness. Biochem J 426:327–335

    PubMed  CAS  Google Scholar 

  • Matsuyama S, Iwadate M, Kondo M, Saitoh M, Hanyu A, Shimizu K, Aburatani H, Mishima HK, Imamura T, Miyazono K et al (2003) SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells. Cancer Res 63:7791–7798

    PubMed  CAS  Google Scholar 

  • May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA (2011) Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res 13:202

    PubMed  Google Scholar 

  • Meulmeester E, Ten Dijke P (2011) The dynamic roles of TGF-beta in cancer. J Pathol 223:205–218

    PubMed  CAS  Google Scholar 

  • Micalizzi DS, Ford HL (2009) Epithelial-mesenchymal transition in development and cancer. Future Oncol 5:1129–1143

    PubMed  Google Scholar 

  • Micalizzi DS, Christensen KL, Jedlicka P, Coletta RD, Baron AE, Harrell JC, Horwitz KB, Billheimer D, Heichman KA, Welm AL et al (2009) The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest 119:2678–2690

    PubMed  CAS  Google Scholar 

  • Micalizzi DS, Wang CA, Farabaugh SM, Schiemann WP, Ford HL (2010) Homeoprotein Six1 increases TGF-beta type I receptor and converts TGF-beta signaling from suppressive to supportive for tumor growth. Cancer Res 70:10371–10380

    PubMed  CAS  Google Scholar 

  • Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114:4359–4369

    PubMed  CAS  Google Scholar 

  • Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ et al (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    PubMed  CAS  Google Scholar 

  • Nam JS, Suchar AM, Kang MJ, Stuelten CH, Tang B, Michalowska AM, Fisher LW, Fedarko NS, Jain A, Pinkas J et al (2006) Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Res 66:6327–6335

    PubMed  CAS  Google Scholar 

  • Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA, Laurence A, Michalowska A, Mamura M, Lonning S et al (2008a) Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res 68:3915–3923

    PubMed  CAS  Google Scholar 

  • Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C, Kohn E, Tang B, Sabzevari H, Anver MR et al (2008b) An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 68:3835–3843

    PubMed  CAS  Google Scholar 

  • Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK (2010) Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res 70:3494–3504

    PubMed  CAS  Google Scholar 

  • Pennison M, Pasche B (2007) Targeting transforming growth factor-beta signaling. Curr Opin Oncol 19:579–585

    PubMed  CAS  Google Scholar 

  • Pierce DF Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ Jr, Moses HL (1995) Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 92:4254–4258

    PubMed  CAS  Google Scholar 

  • Pinkas J, Teicher BA (2006) TGF-beta in cancer and as a therapeutic target. Biochem Pharmacol 72:523–529

    PubMed  CAS  Google Scholar 

  • Rahimi RA, Leof EB (2007) TGF-beta signaling: a tale of two responses. J Cell Biochem 102:593–608

    PubMed  CAS  Google Scholar 

  • Rausch MP, Hahn T, Ramanathapuram L, Bradley-Dunlop D, Mahadevan D, Mercado-Pimentel ME, Runyan RB, Besselsen DG, Zhang X, Cheung HK et al (2009) An orally active small molecule TGF-beta receptor I antagonist inhibits the growth of metastatic murine breast cancer. Anticancer Res 29:2099–2109

    PubMed  CAS  Google Scholar 

  • Ren Y, Wu L, Frost AR, Grizzle W, Cao X, Wan M (2009) Dual effects of TGF-beta on ERalpha-mediated estrogenic transcriptional activity in breast cancer. Mol Cancer 8:111

    PubMed  Google Scholar 

  • Rifkin DB (2005) Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 280:7409–7412

    PubMed  CAS  Google Scholar 

  • Rubenstein M, Tsui P, Guinan P (2009) Multigene targeting of signal transduction pathways for the treatment of breast and prostate tumors: comparison between combination therapies employing bispecific oligonucleotides with either Rapamycin or Paclitaxel. Med Oncol 26:124–130

    PubMed  CAS  Google Scholar 

  • Ruzek MC, Hawes M, Pratt B, McPherson J, Ledbetter S, Richards SM, Garman RD (2003) Minimal effects on immune parameters following chronic anti-TGF-beta monoclonal antibody administration to normal mice. Immunopharmacol Immunotoxicol 25:235–257

    PubMed  CAS  Google Scholar 

  • Sadej R, Romanska H, Kavanagh D, Baldwin G, Takahashi T, Kalia N, Berditchevski F (2011) Tetraspanin CD151 regulates transforming growth factor beta signaling: implication in tumor metastasis. Cancer Res 70:6059–6070

    Google Scholar 

  • Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    PubMed  CAS  Google Scholar 

  • Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100:8430–8435

    PubMed  CAS  Google Scholar 

  • Singh G, Singh SK, Konig A, Reutlinger K, Nye MD, Adhikary T, Eilers M, Gress TM, Fernandez-Zapico ME, Ellenrieder V (2010) Sequential activation of NFAT and c-Myc transcription factors mediates the TGF-beta switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem 285:27241–27250

    PubMed  CAS  Google Scholar 

  • Singha PK, Yeh IT, Venkatachalam MA, Saikumar P (2010) Transforming growth factor-beta (TGF-beta)-inducible gene TMEPAI converts TGF-beta from a tumor suppressor to a tumor promoter in breast cancer. Cancer Res 70:6377–6383

    PubMed  CAS  Google Scholar 

  • Stope MB, Popp SL, Knabbe C, Buck MB (2010) Estrogen receptor alpha attenuates transforming growth factor-beta signaling in breast cancer cells independent from agonistic and antagonistic ligands. Breast Cancer Res Treat 120:357–367

    PubMed  CAS  Google Scholar 

  • Stover DG, Bierie B, Moses HL (2007) A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem 101:851–861

    PubMed  CAS  Google Scholar 

  • Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE (2010) Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One 5:e9832

    PubMed  Google Scholar 

  • Tan AR, Alexe G, Reiss M (2009) Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 115:453–495

    PubMed  CAS  Google Scholar 

  • Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM (2003) TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112:1116–1124

    PubMed  CAS  Google Scholar 

  • Tang B, Yoo N, Vu M, Mamura M, Nam JS, Ooshima A, Du Z, Desprez PY, Anver MR, Michalowska AM et al (2007) Transforming growth factor-beta can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res 67:8643–8652

    PubMed  CAS  Google Scholar 

  • Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107:15449–15454

    PubMed  CAS  Google Scholar 

  • Tian M, Schiemann WP (2009) Preclinical efficacy of cystatin C to target the oncogenic activity of transforming growth factor Beta in breast cancer. Transl Oncol 2:174–183

    PubMed  Google Scholar 

  • Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL et al (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11:943–950

    PubMed  CAS  Google Scholar 

  • Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796:75–90

    PubMed  CAS  Google Scholar 

  • Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH, Pandiella A, Arteaga CL (2008) Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 28:5605–5620

    PubMed  CAS  Google Scholar 

  • Wang SE, Xiang B, Zent R, Quaranta V, Pozzi A, Arteaga CL (2009) Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res 69:475–482

    PubMed  CAS  Google Scholar 

  • Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, Rankin-Gee, EK, Wang SE (2010) Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene (in press)

  • Wendt MK, Schiemann WP (2009) Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasis. Breast Cancer Res 11:R68

    PubMed  Google Scholar 

  • Wendt MK, Allington TM, Schiemann WP (2009a) Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5:1145–1168

    PubMed  CAS  Google Scholar 

  • Wendt MK, Smith JA, Schiemann WP (2009b) p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. J Biol Chem 284:34145–34156

    PubMed  CAS  Google Scholar 

  • Wendt MK, Smith JA, Schiemann WP (2010) Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 29:6485–6498

    PubMed  CAS  Google Scholar 

  • Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, Ten Dijke P (2010) The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat (in press)

  • Wilson TJ, Nannuru KC, Singh RK (2009) Cathepsin G-mediated activation of pro-matrix metalloproteinase 9 at the tumor-bone interface promotes transforming growth factor-beta signaling and bone destruction. Mol Cancer Res 7:1224–1233

    PubMed  CAS  Google Scholar 

  • Wilson TJ, Nannuru KC, Futakuchi M, Singh RK (2010) Cathepsin G-mediated enhanced TGF-beta signaling promotes angiogenesis via upregulation of VEGF and MCP-1. Cancer Lett 288:162–169

    PubMed  CAS  Google Scholar 

  • Xu L (2006) Regulation of Smad activities. Biochim Biophys Acta 1759:503–513

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Mukaisho K, Sugihara H, Hattori T, Asano S (2011) Down-Regulation of FXYD3 Is Induced by Transforming Growth Factor-beta Signaling via ZEB1/deltaEF1 in Human Mammary Epithelial Cells. Biol Pharm Bull 34:324–329

    PubMed  Google Scholar 

  • Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  CAS  Google Scholar 

  • Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227

    PubMed  CAS  Google Scholar 

  • Yin X, Wolford CC, Chang YS, McConoughey SJ, Ramsey SA, Aderem A, Hai T (2010) ATF3, an adaptive-response gene, enhances TGF{beta} signaling and cancer-initiating cell features in breast cancer cells. J Cell Sci 123:3558–3565

    PubMed  CAS  Google Scholar 

  • Yoshimura A, Wakabayashi Y, Mori T (2010) Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 147:781–792

    PubMed  CAS  Google Scholar 

  • You HJ, How T, Blobe GC (2009) The type III transforming growth factor-beta receptor negatively regulates nuclear factor kappa B signaling through its interaction with beta-arrestin2. Carcinogenesis 30:1281–1287

    PubMed  CAS  Google Scholar 

  • Yu Y, Wang Y, Ren X, Tsuyada A, Li A, Liu LJ, Wang SE (2011) Context-dependent bidirectional regulation of the MutS homolog 2 by transforming growth factor beta contributes to chemoresistance in breast cancer cells. Mol Cancer Res 8:1633–1642

    Google Scholar 

  • Yun C, Mendelson J, Blake T, Mishra L, Mishra B (2008) TGF-beta signaling in neuronal stem cells. Dis Markers 24:251–255

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by a project from Hunan Provincial Natural Science Foundation of China (11JJ4068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deliang Cao.

Additional information

Xuyu Zu and Qinghai Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zu, X., Zhang, Q., Cao, R. et al. Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update. Cell Tissue Res 347, 73–84 (2012). https://doi.org/10.1007/s00441-011-1225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1225-3

Keywords

Navigation