Skip to main content

Advertisement

Log in

Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration. Adipose-derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures that should facilitate their use in such regenerative applications. We have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures. Cells from the superficial layer proliferate significantly faster than those from the deep layer. In both the deep and superficial layers, ASC express the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen. Superficial layer ASC induce the significantly enhanced outgrowth of neurite-like processes from neuronal cell lines when compared with that of deep layer cells. However, analysis by reverse transcription with the polymerase chain reaction and by enzyme-linked immunosorbent assay has revealed that ASC isolated from both layers express similar levels of the following neurotrophic factors: nerve growth factor, brain-derived neurotrophic factor and glial-derived neurotrophic factor. Thus, human ASC show promising potential for the treatment of traumatic nerve injuries. In particular, superficial layer ASC warrant further analysis of their neurotrophic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksu AE, Rubin JP, Dudas JR, Marra KG (2008) Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann Plast Surg 60:306–322

    Article  PubMed  CAS  Google Scholar 

  • Anghileri E, Marconi S, Pignatelli A, Cifelli P, Galie M, Sbarbati A, Krampera M, Belluzzi O, Bonetti B (2008) Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev 17:909–916

    Article  PubMed  CAS  Google Scholar 

  • Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, Gelmini S, Guasti D, Benvenuti S, Annunziato F, Bani D, Liotta F, Francini F, Perigli G, Serio M, Luconi M (2009) Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J 23:3494–3505

    Article  PubMed  CAS  Google Scholar 

  • Barrilleaux B, Phinney DG, Prockop DJ, O'Connor KC (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019

    Article  PubMed  CAS  Google Scholar 

  • Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115–120

    Article  PubMed  CAS  Google Scholar 

  • Carlson KB, Singh P, Feaster MM, Ramnarain A, Pavlides C, Chen ZL, Yu WM, Feltri ML, Strickland S (2010) Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell-derived laminin. Glia 59:267–277

    Article  Google Scholar 

  • Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  PubMed  Google Scholar 

  • Chernousov MA, Carey DJ (2000) Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 15:593–601

    PubMed  CAS  Google Scholar 

  • Choi RC, Pun S, Dong TT, Wan DC, Tsim KW (1997) NG108-15 cells induce the expression of muscular acetylcholinesterase when co-cultured with myotubes. Neurosci Lett 236:167–170

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776

    Article  PubMed  CAS  Google Scholar 

  • Enzmann GU, Benton RL, Talbott JF, Cao Q, Whittemore SR (2006) Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 23:479–495

    Article  PubMed  Google Scholar 

  • Franco Lambert AP, Fraga Zandonai A, Bonatto D, Cantarelli Machado D, Pêgas Henriques JA (2009) Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77:221–228

    Article  PubMed  Google Scholar 

  • Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Zhu JK, Liu XL, Xiang P, Hu J, Yu WH (2008) Differentiation of rat adipose tissue-derived stem cells into Schwann-like cells in vitro. NeuroReport 19:1015–1019

    Article  PubMed  Google Scholar 

  • Kim JH, Jee MK, Lee SY, Han TH, Kim BS, Kang KS, Kang SK (2009) Regulation of adipose tissue stromal cells behaviors by endogenic Oct4 expression control. PLoS ONE 4:e7166

    Article  PubMed  Google Scholar 

  • Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J (2007) Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 20:867–876

    Article  PubMed  CAS  Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207:267–274

    Article  PubMed  CAS  Google Scholar 

  • Lundborg G (2000) A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 25:391–414

    Article  PubMed  CAS  Google Scholar 

  • Oedayrajsingh-Varma MJ, Ham SM van, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, Milligen FJ van (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8:166–177

    Article  PubMed  CAS  Google Scholar 

  • Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende AR, Grechi B, Gehlen D, Machado DC (2008) Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 122:614–618

    Article  PubMed  CAS  Google Scholar 

  • Pfister LA, Papaloizos M, Merkle HP, Gander B (2007) Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 12:65–82

    Article  PubMed  CAS  Google Scholar 

  • Quirici N, Scavullo C, Girolamo L de, Lopa S, Arrigoni E, Deliliers GL, Brini AT (2009) Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells Dev 19:915–925

    Article  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  • Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 5:378–386

    Article  PubMed  CAS  Google Scholar 

  • Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737

    Article  PubMed  CAS  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  PubMed  CAS  Google Scholar 

  • Santiago LY, Clavijo-Alvarez J, Brayfield C, Rubin JP, Marra KG (2009) Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant 18:145–158

    Article  PubMed  Google Scholar 

  • Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60:538–544

    Article  PubMed  CAS  Google Scholar 

  • Sondell M, Sundler F, Kanje M (2000) Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 12:4243–4254

    Article  PubMed  CAS  Google Scholar 

  • Summa PG di, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2009) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63:1544–1552

    Article  PubMed  Google Scholar 

  • Sterodimas A, Faria J de, Nicaretta B, Pitanguy I (2009) Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg 63:1886–1892

    Article  PubMed  Google Scholar 

  • Terenghi G, Wiberg M, Kingham PJ (2009) Use of stem cells for improving nerve regeneration. Int Rev Neurobiol 87:393–403

    Article  PubMed  CAS  Google Scholar 

  • Walsh S, Midha R (2009) Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 26:E2

    Article  PubMed  Google Scholar 

  • Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, Tan J, Lee WH, Hampel H, Dodel R, Johnstone BH, March KL, Farlow MR, Du Y (2008) IFATS series. The conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 27:478–488

    Article  Google Scholar 

  • Xu Y, Liu Z, Liu L, Zhao C, Xiong F, Zhou C, Li Y, Shan Y, Peng F, Zhang C (2008) Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci 9:21

    Article  PubMed  Google Scholar 

  • Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM, Gronthos S (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421

    Article  PubMed  CAS  Google Scholar 

  • Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Peault B, Rubin JP, Donnenberg AD (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77:22–30

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Kingham.

Additional information

Grant support

This study was supported by the Swedish Medical Research Council, Umeå University, County of Västerbotten, Magn. Bergvalls Stiftelse, Clas Groschinskys Minnesfond, Åke Wibergs Stiftelse, the Gunvor and Josef Aner Foundation, SwissLife Foundation, the SUVA and the University of Lausanne FBM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalbermatten, D.F., Schaakxs, D., Kingham, P.J. et al. Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res 344, 251–260 (2011). https://doi.org/10.1007/s00441-011-1142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1142-5

Keywords

Navigation