Skip to main content

Advertisement

Log in

Ultrastructure of neuroglial contacts in crayfish stretch receptor

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In order to explore neuroglial relationships in a simple nervous system, we have studied the ultrastructure of the crayfish stretch receptor, which consists of only two mechanoreceptor neurons enwrapped by glial cells. The glial envelope comprises 10–30 glial layers separated by collagen sheets. The intercellular space between the neuronal and glial membranes is generally less than 10–15 nm in width. This facilitates diffusion between neurons and glia but restricts neuron communication with the environment. Microtubule bundles passing from the dendrites to the axon through the neuron body limit vesicular transport between the perikaryon and the neuronal membrane. Numerous invaginations into the neuron cytoplasm strengthen glia binding to the neuron and shorten the diffusion pathway between them. Double-membrane vesicles containing fragments of glial, but not neuronal cytoplasm, represent the captured tips of invaginations. Specific triads, viz., “flat submembrane cisterns - vesicles - mitochondria”, are presumably involved in the formation of the invaginations and double-membrane vesicles and in neuroglial exchange. The tubular lattice in the glial cytoplasm might transfer ions and metabolites between the glial layers. The integrity of the neuronal and glial membranes is impaired in some places. However, free neuroglial passage might be prevented or limited by the dense diffuse material accumulated in these regions. Thus, neuroglial exchange with cellular components might be mediated by transmembrane diffusion, especially in the invaginations and submembrane cisterns, by the formation of double-walled vesicles in which large glial masses are captured and by transfer through tubular lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akoev GN, Alexeev NP (1985) Functional organization of mechanoreceptors (in Russian). Nauka, Leningrad

    Google Scholar 

  • Alexandrowicz JS (1967) Receptor organs in thoracic and abdominal muscles of crustacean. Biol Rev 42:288–326

    Article  Google Scholar 

  • Barres BA, Barde YA (2000) Neuronal and glial cell biology. Curr Opin Neurobiol 10:642–648

    Article  PubMed  CAS  Google Scholar 

  • Benedeczky I, Molnar E, Somogyi P (1994) The cisternal organelle as a Ca(2+)-storing compartment associated with GABAergic synapses in the initial segment of hippocampal pyramidal neurones. Exp Brain Res 101:216–230

    Article  PubMed  CAS  Google Scholar 

  • Beshay JE, Hahn P, Beshay VE, Hargittai PT, Lieberman EM (2005) Activity-dependent change in morphology of the glial tubular lattice of the crayfish medial giant nerve fiber. Glia 51:121–131

    Article  PubMed  Google Scholar 

  • Borovyagin VL, Sakharov DA (1968) Ultrastructure of giant neurons of tritonia (atlas; in Russian). Medicine, Moscow

    Google Scholar 

  • Buschmann MT (1979) Development of lamellar bodies and subsurface cisterns in pyramidal cells and neuroblasts of hamster cerebral cortex. Am J Anat 155:175–183

    Article  PubMed  CAS  Google Scholar 

  • Cuadras J, Marti-Subirana A (1987) Glial cells of the crayfish and their relationships with neurons. An ultrastructural study. J Physiol (Paris) 82:196–217

    CAS  Google Scholar 

  • Eckenhoff MF, Pysh JJ (1979) Double-walled coated vesicle formation: evidence for massive and transient conjugate internalization of plasma membranes during cerebellar development. J Neurocytol 8:623–638

    Article  PubMed  CAS  Google Scholar 

  • Eddleman CS, Ballinger ML, Smyers ME, Fishman HM, Bittner GD (1998) Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J Neurosci 18:4029–4041

    PubMed  CAS  Google Scholar 

  • Elekes K, Florey E (1987) New types of synaptic connections in crayfish stretch receptor organs: an electron microscopic study. J Neurocytol 16:613–626

    Article  PubMed  CAS  Google Scholar 

  • Fedorenko GM, Uzdensky AB (1986) Ultrastructural changes in the isolated crayfish mechanoreceptor neuron caused by microirradiation with helium-cadmium laser (in Russian). Tsitologiia 28:512–516

    Google Scholar 

  • Fedorenko GM, Uzdensky AB (2008) Dynamics of ultrastructural changes in the isolated crayfish mechanoreceptor neuron under photodynamic impact. J Neurosci Res 86:1409–1416

    Article  PubMed  CAS  Google Scholar 

  • Fedorenko GM, Gusatinsky VN, Kaminsky II, Kondratyeva LA, Korzak VM (1995) Changing of an isolated neurone ultrastructure during a prolonged impact of mediator. NeuroReport 6:2325–2332

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Fischer H, Uerlings I, David H (1975) Light and electron microscopic studies of slowly adapting abdominal stretch receptors of the American river crayfish Orconectes limosus (in German). Z Mikrosk Anat Forsch 89:340–366

    PubMed  CAS  Google Scholar 

  • Florey E, Florey E (1955) Microanatomy of the abdominal stretch receptors of the crayfish Astacus fluviatilis L. J Gen Physiol 39:69–85

    Article  PubMed  CAS  Google Scholar 

  • Fomichev NN (1986) Freshwater crayfish. Methods of investigation (in Russian). Nauka, Leningrad

    Google Scholar 

  • Gomes FCA, Spohr TCLS, Martinez R, Moura Neto V (2001) Cross-talk between neurons and glia: highlights on soluble factors. Braz J Med Biol Res 34:611–620

    PubMed  CAS  Google Scholar 

  • Grinspan JB, Marchionni MA, Reeves M, Coulaloglou M, Scherer SS (1996) Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. J Neurosci 16:6107–6118

    PubMed  CAS  Google Scholar 

  • Hoyle G, Williams M, Phillips C (1986) Functional morphology of insect neuronal cell-surface/glial contacts: the trophospongium. J Comp Neurol 246:113–128

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Takasaka T (1993) Confocal laser microscopical images of calcium distribution and intracellular organelles in the outer hair cell isolated from the guinea pig cochlea. Hear Res 66:169–176

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Ransom BR (2004) Neuroglia. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kogan AB, Mashanskiĭ VF, Fedorenko GM, Zaguskin SL (1974) The ultrastructure of crayfish mechanoreceptor neurons during rest, rhythmic impulse activity and inhibition induced by adequate stimulation (in Russian). Tsitologiia 16:150–154

    PubMed  CAS  Google Scholar 

  • Kolosov M, Uzdensky A (2006) Crayfish mechanoreceptor neuron prevents photoinduced apoptosis of satellite glial cells. Brain Res Bull 69:495–500

    Article  PubMed  Google Scholar 

  • Kopp DM, Trachtenberg JT, Thompson WJ (1997) Glial growth factor rescues Schwann cells of mechanoreceptors from denervation-induced apoptosis. J Neurosci 17:6697–6706

    PubMed  CAS  Google Scholar 

  • Lane NJ, Swales LS, Abbott NJ (1977) Lanthanum penetration in crayfish nervous system: observations on intact and “desheathed” preparations. J Cell Sci 23:315–324

    PubMed  CAS  Google Scholar 

  • Largo C, Cuevas P, Herreras O (1996) Is glia disfunction the initial cause of neuronal death in ischemic penumbra? Neurol Res 18:445–448

    PubMed  CAS  Google Scholar 

  • Li YC, Li YN, Cheng CX, Sakamoto H, Kawate T, Shimada O, Atsumi S (2005) Subsurface cisterna-lined axonal invaginations and double-walled vesicles at the axonal-myelin sheath interface. Neurosci Res 53:298–303

    Article  PubMed  CAS  Google Scholar 

  • Lobanov AV, Uzdensky AB (2005) PDT-induced death of sensory neurons and glial cells in the isolated crayfish stretch receptor after proteolytic treatment. J Neurosci Res 82:866–874

    Article  PubMed  CAS  Google Scholar 

  • Mashansky VF, Zaguskin SL, Fedorenko GM (1974) Histochemical and electron-microscopic study of neuroglial relationships in the crayfish stretch receptor (in Russian). Tsitologiia 16:770–773

    Google Scholar 

  • Moshkov DA, Gordon RIa, Perevoshchikov VV (1978) Ultrastructure of a mechanoreceptor neuron with acceleration of its adptation to an adequate stimulus (in Russian). Tsitologiia 20:280–285

    PubMed  CAS  Google Scholar 

  • Norlander RH, Singer M (1972) Electron microscopy of severed motor fibers in the crayfish. Z Zellforsch 126:157–181

    Article  Google Scholar 

  • Novotny GE (1984) Formation of cytoplasm-containing vesicles from double-walled coated invaginations containing oligodendrocytic cytoplasm at the axon-myelin sheath interface in adult mammalian central nervous system. Acta Anat 119:106–112

    Article  PubMed  CAS  Google Scholar 

  • Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492:50–65

    Article  PubMed  Google Scholar 

  • Roza C de la, Cano J, Satorre J, Reinoso-Suárez F (1986) A morphologic analysis of neurons and neuropil in the dorsal lateral geniculate nucleus of aged rats. Mech Ageing Dev 34:233–248

    Article  PubMed  Google Scholar 

  • Rydqvist B, Lin JH, Sand P, Swerup C (2007) Mechanotransduction and the crayfish stretch receptor. Physiol Behav 92:21–28

    Article  PubMed  CAS  Google Scholar 

  • Shrager P, Starkus JC, Lo MV, Peracchia C (1983) The periaxonal space of crayfish giant axons. J Gen Physiol 82:221–244

    Article  PubMed  CAS  Google Scholar 

  • Spacek J, Lieberman AR (1980) Relationships between mitochondrial outer membranes and agranular reticulum in nervous tissue: ultrastructural observations and a new interpretation. J Cell Sci 46:129–147

    PubMed  CAS  Google Scholar 

  • Tao-Cheng JH, Hirosawa K, Nakajima Y (1981) Ultrastructure of the crayfish stretch receptor in relation to its function. J Comp Neurol 200:1–21

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova LA, Popov VI, Pavlenko VK, Lednev VV (1991) The spatial organization of the cytoskeleton in crayfish stretch receptor. Eur J Cell Biol 56:132–138

    PubMed  CAS  Google Scholar 

  • Uzdensky A, Kolosov M, Bragin D, Dergacheva O, Vanzha O, Oparina L (2005) Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatment.Glia 49:339–348

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Butt A (2007) Glial neurobiology. Wiley, New York

    Book  Google Scholar 

  • Watanabe H, Burnstock G (1976) Junctional subsurface organs in frog sympathetic ganglion cells. J Neurocytol 5:125–136

    Article  PubMed  CAS  Google Scholar 

  • Zohar O (2001) Electrophysiological and ultrastructural changes in severed motor axon of the crayfish. Neurosci Res 41:151–159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Lobanov for help in the preparation of crayfish stretch receptors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly B. Uzdensky.

Additional information

This work was supported by RFBR (grants 05-04-48440 and 08-04-01322) and Minobrnauki RF (grant 2.1.1/6185).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorenko, G.M., Uzdensky, A.B. Ultrastructure of neuroglial contacts in crayfish stretch receptor. Cell Tissue Res 337, 477–490 (2009). https://doi.org/10.1007/s00441-009-0825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0825-7

Keywords

Navigation