Skip to main content
Log in

Effects of hyperosmotic stress on cultured airway epithelial cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Inhalation of hyperosmotic solutions (salt, mannitol) has been used in the treatment of patients with cystic fibrosis or asthma, but the mechanism behind the effect of hyperosmotic solutions is unclear. The relation between osmolarity and permeability changes was examined in an airway cell line by the addition of NaCl, NaBr, LiCl, mannitol, or xylitol (295–700 mOsm). Transepithelial resistance was measured as an indicator of the tightness of the cultures. Cell-cell contacts and morphology were investigated by immunofluorescence and by transmission electron microscopy, with lanthanum nitrate added to the luminal side of the epithelium to investigate tight junction permeability. The electrolyte solutions caused a significant decrease in transepithelial resistance from 450 mOsm upwards, when the hyperosmolar exposure was gradually increased from 295 to 700 mOsm; whereas the nonelectrolyte solutions caused a decrease in transepithelial resistance from 700 mOsm upwards. Old cultures reacted in a more rigid way compared to young cultures. Immuno-fluorescence pictures showed weaker staining for the proteins ZO-1, claudin-4, and plakoglobin in treated samples compared to the control. The ultrastructure revealed an increased number of open tight junctions as well as a disturbed morphology with increasing osmolarity, and electrolyte solutions opened a larger proportion of tight junctions than nonelectrolyte solutions. This study shows that hyperosmotic solutions cause the opening of tight junctions, which may increase the permeability of the paracellular pathway and result in increased transepithelial water transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson SD, Spring J, Moore B, Rodwell LT, Spalding N, Gonda I, Chan K, Walsh A, Clark AR (1997) The effect of inhaling a dry powder of sodium chloride on the airways of asthmatic subjects. Eur Respir J 10:2465–2473

    Article  PubMed  CAS  Google Scholar 

  • Boek WM, Keles N, Graamans K, Huizing EH (1999) Physiologic and hypertonic saline solutions impair ciliary activity in vitro. Laryngoscope 109:396–399

    Article  PubMed  CAS  Google Scholar 

  • Boucher RC (1994) Human airway ion transport. Part one. Am J Respir Crit Care Med 150:271–281

    PubMed  CAS  Google Scholar 

  • Brannan JD, Gulliksson M, Anderson SD, Chew N, Kumlin M (2003) Evidence of mast cell activation and leukotriene release after mannitol inhalation. Eur Respir J 22:491–496

    Article  PubMed  CAS  Google Scholar 

  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283:C142–C147

    PubMed  CAS  Google Scholar 

  • Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47

    PubMed  CAS  Google Scholar 

  • Daviskas E, Anderson SD, Gonda I, Eberl S, Meikle S, Seale JP, Bautovich G (1996) Inhalation of hypertonic saline aerosol enhances mucociliary clearance in asthmatic and healthy subjects. Eur Respir J 9:725–732

    Article  PubMed  CAS  Google Scholar 

  • Daviskas E, Anderson SD, Brannan JD, Chan HK, Eberl S, Bautovich G (1997) Inhalation of dry-powder mannitol increases mucociliary clearance. Eur Respir J 10:2449–2454

    Article  PubMed  CAS  Google Scholar 

  • Daviskas E, Robinson M, Anderson SD, Bye PT (2002) Osmotic stimuli increase clearance of mucus in patients with mucociliary dysfunction. J Aerosol Med 15:331–341

    Article  PubMed  Google Scholar 

  • Dodoo AN, Bansal SS, Barlow DJ, Bennet F, Hider RC, Lansley AB, Lawrence MJ, Marriott C (2000) Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport. J Pharm Sci 89:223–231

    Article  PubMed  CAS  Google Scholar 

  • Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC (2006) Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 354:241–250

    Article  PubMed  CAS  Google Scholar 

  • Dorscheid DR, Conforti AE, Hamann KJ, Rabe KF, White SR (1999) Characterization of cell surface lectin-binding patterns of human airway epithelium. Histochem J 31:145–151

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt C, Kneuer C, Fiegel J, Hanes J, Schaefer UF, Kim KJ, Lehr CM (2002) Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res 308:391–400

    Article  PubMed  CAS  Google Scholar 

  • Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354:229–240

    Article  PubMed  CAS  Google Scholar 

  • Gruenert DC, Willems M, Cassiman JJ, Frizzell RA (2004) Established cell lines used in cystic fibrosis research. J Cyst Fibros 3(Suppl 2):191–196

    Article  PubMed  CAS  Google Scholar 

  • Henig NR, Tonelli MR, Pier MV, Burns JL, Aitken ML (2001) Sputum induction as a research tool for sampling the airways of subjects with cystic fibrosis. Thorax 56:306–311

    Article  PubMed  CAS  Google Scholar 

  • Hirsh AJ (2002) Altering airway surface liquid volume: inhalation therapy with amiloride and hyperosmotic agents. Adv Drug Deliv Rev 54:1445–1462

    Article  PubMed  CAS  Google Scholar 

  • Högman M, Mork AC, Roomans GM (2002) Hypertonic saline increases tight junction permeability in airway epithelium. Eur Respir J 20:1444–1448

    Article  PubMed  Google Scholar 

  • Jongejan RC, De Jongste JC, Raatgeep RC, Bonta IL, Kerrebijn KF (1990) Effects of changes in osmolarity on isolated human airways. J Appl Physiol 68:1568–1575

    PubMed  CAS  Google Scholar 

  • Mathia NR, Timoszyk J, Stetsko PI, Megill JR, Smith RL, Wall DA (2002) Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target 10:31–40

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516

    Article  PubMed  CAS  Google Scholar 

  • Morris MR, Doull IJ, Hallett MB (2001) Osmotically induced cytosolic free Ca(2+) changes in human neutrophils. Biochim Biophys Acta 1538:20–27

    Article  PubMed  CAS  Google Scholar 

  • Nilsson H, Dragomir A, Ahlander A, Ljungkvist M, Roomans GM (2006) A modified technique for the impregnation of lanthanum tracer to study the integrity of tight junctions on cells grown on a permeable substrate. Microsc Res Tech 69:776–783

    Article  PubMed  CAS  Google Scholar 

  • Relova AJ, Roomans GM (2001) Effect of luminal osmolarity on ion content of connective tissue in rat trachea after epithelial damage. Eur Respir J 18:810–816

    Article  PubMed  CAS  Google Scholar 

  • Robinson M, Hemming AL, Regnis JA, Wong AG, Bailey DL, Bautovich GJ, King M, Bye PT (1997) Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax 52:900–903

    Article  PubMed  CAS  Google Scholar 

  • Sagel SD, Kapsner R, Osberg I, Sontag MK, Accurso FJ (2001) Airway inflammation in children with cystic fibrosis and healthy children assessed by sputum induction. Am J Respir Crit Care Med 164:1425–1431

    PubMed  CAS  Google Scholar 

  • Shaklai M, Tavassoli M (1977) A modified technique to obtain uniform precipitation of lanthanum tracer in the extracellular space. J Histochem Cytochem 25:1013–1015

    PubMed  CAS  Google Scholar 

  • Shoseyov D, Bibi H, Shai P, Shoseyov N, Shazberg G, Hurvitz H (1998) Treatment with hypertonic saline versus normal saline nasal wash of pediatric chronic sinusitis. J Allergy Clin Immunol 101:602–605

    Article  PubMed  CAS  Google Scholar 

  • Suri R, Metcalfe C, Lees B, Grieve R, Flather M, Normand C, Thompson S, Bush A, Wallis C (2001) Comparison of hypertonic saline and alternate-day or daily recombinant human deoxyribonuclease in children with cystic fibrosis: a randomised trial. Lancet 358:1316–1321

    Article  PubMed  CAS  Google Scholar 

  • Venglarik CJ, Giron-Calle J, Wigley AF, Malle E, Watanabe N, Forman HJ (2003) Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione. J Appl Physiol 95:2444–2452

    PubMed  CAS  Google Scholar 

  • Wark PA, McDonald V, Jones AP (2005) Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst Rev CD001506

  • Wen H, Watry DD, Marcondes MC, Fox HS (2004) Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol 24:8408–8417

    Article  PubMed  CAS  Google Scholar 

  • Winters SL, Yeates DB (1997a) Interaction between ion transporters and the mucociliary transport system in dog and baboon. J Appl Physiol 83:1348–1359

    PubMed  CAS  Google Scholar 

  • Winters SL, Yeates DB (1997b) Roles of hydration, sodium, and chloride in regulation of canine mucociliary transport system. J Appl Physiol 83:1360–1369

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The expert help with discussing and reviewing the electron micrographs with Dr. Agneta Lukinius as well as the expert technical assistance of Marianne Ljungkvist and Leif Ljung are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriet Nilsson.

Additional information

This study was supported by the Swedish Asthma and Allergy Association and the Swedish Heart Lung Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, H., Dragomir, A., Ahlander, A. et al. Effects of hyperosmotic stress on cultured airway epithelial cells. Cell Tissue Res 330, 257–269 (2007). https://doi.org/10.1007/s00441-007-0482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0482-7

Keywords

Navigation