Skip to main content

Advertisement

Log in

Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Termination of synaptic transmission by neurotransmitter hydrolysis is a substantial characteristic of cholinergic synapses. This unique termination mechanism makes acetylcholinesterase (AChE), the enzyme in charge of executing acetylcholine breakdown, a key component of cholinergic signaling. AChE is now known to exist not as a single entity, but rather as a combinatorial complex of protein products. The diverse AChE molecular forms are generated by a single gene that produces over ten different transcripts by alternative splicing and alternative promoter choices. These transcripts are translated into six different protein subunits. Mature AChE proteins are found as soluble monomers, amphipatic dimers, or tetramers of these subunits and become associated to the cellular membrane by specialized anchoring molecules or members of other heteromeric structural components. A substantial increasing body of research indicates that AChE functions in the central nervous system go far beyond the termination of synaptic transmission. The non-enzymatic neuromodulatory functions of AChE affect neurite outgrowth and synaptogenesis and play a major role in memory formation and stress responses. The structural homology between AChE and cell adhesion proteins, together with the recently discovered protein partners of AChE, predict the future unraveling of the molecular pathways underlying these multileveled functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anglister L, Stiles JR, Salpeter MM (1994) Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling of their role in synaptic function. Neuron 12:783–794

    Article  PubMed  CAS  Google Scholar 

  • Anselmet A, Fauquet M, Chatel JM, Maulet Y, Massoulie J, Vallette FM (1994) Evolution of acetylcholinesterase transcripts and molecular forms during development in the central nervous system of the quail. J Neurochem 62:2158–2165

    Article  PubMed  CAS  Google Scholar 

  • Appleyard ME (1995) Acetylcholinesterase induces long-term potentiation in CA1 pyramidal cells by a mechanism dependent on metabotropic glutamate receptors. Neurosci Lett 190:25–28

    Article  PubMed  CAS  Google Scholar 

  • Appleyard M, Jahnsen H (1992) Actions of acetylcholinesterase in the guinea-pig cerebellar cortex in vitro. Neuroscience 47:291–301

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bruckner MK, Lange M, Bigl V (1992) Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development—a study of molecular forms. Neurochem Int 21:381–396

    Article  PubMed  CAS  Google Scholar 

  • Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y (2002) Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nat Neurosci 5:119–123

    Article  PubMed  CAS  Google Scholar 

  • Auld VJ, Fetter RD, Broadie K, Goodman CS (1995) Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell 81:757–767

    Article  PubMed  CAS  Google Scholar 

  • Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I (2002) Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 41:3555–3564

    Article  PubMed  CAS  Google Scholar 

  • Bartels CF, Zelinski T, Lockridge O (1993) Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism. Am J Hum Genet 52:928–936

    PubMed  CAS  Google Scholar 

  • Barthalay Y, Hipeau-Jacquotte R, Escalera S de la, Jimenez F, Piovant M (1990) Drosophila neurotactin mediates heterophilic cell adhesion. EMBO J 9:3603–3609

    PubMed  CAS  Google Scholar 

  • Bartol TM Jr, Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307

    PubMed  CAS  Google Scholar 

  • Ben Aziz-Aloya R, Seidman S, Timberg R, Sternfeld M, Zakut H, Soreq H (1993) Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos. Proc Natl Acad Sci USA 90:2471–2475

    Article  PubMed  CAS  Google Scholar 

  • Benmoyal-Segal L, Vander T, Shifman S, Bryk B, Ebstein RP, Marcus EL, Stessman J, Darvasi A, Herishanu Y, Friedman A, Soreq H (2005) Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson’s disease. FASEB J 19:452–454

    PubMed  CAS  Google Scholar 

  • Benson DL, Schnapp LM, Shapiro L, Huntley GW (2000) Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends Cell Biol 10:473–482

    Article  PubMed  CAS  Google Scholar 

  • Biagioni S, Bevilacqua P, Scarsella G, Vignoli AL, Augusti-Tocco G (1995) Characterization of acetylcholinesterase secretion in neuronal cultures and regulation by high K+ and soluble factors from target cells. J Neurochem 64:1528–1535

    Article  PubMed  CAS  Google Scholar 

  • Bigbee JW, Sharma KV, Chan EL, Bogler O (2000) Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res 861:354–362

    Article  PubMed  CAS  Google Scholar 

  • Birikh KR, Sklan EH, Shoham S, Soreq H (2003) Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc Natl Acad Sci USA 100:283–288

    Article  PubMed  CAS  Google Scholar 

  • Blank T, Nijholt I, Eckart K, Spiess J (2002) Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J Neurosci 22:3788–3794

    PubMed  CAS  Google Scholar 

  • Bon CL, Greenfield SA (2003) Bioactivity of a peptide derived from acetylcholinesterase: electrophysiological characterization in guinea-pig hippocampus. Eur J Neurosci 17:1991–1995

    Article  PubMed  Google Scholar 

  • Bon S, Ayon A, Leroy J, Massoulie J (2003) Trimerization domain of the collagen tail of acetylcholinesterase. Neurochem Res 28:523–535

    Article  PubMed  CAS  Google Scholar 

  • Botti SA, Felder CE, Sussman JL, Silman I (1998) Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs. Protein Eng 11:415–420

    Article  PubMed  CAS  Google Scholar 

  • Boudreau-Lariviere C, Sveistrup H, Parry DJ, Jasmin BJ (1996) Ciliary neurotrophic factor: regulation of acetylcholinesterase in skeletal muscle and distribution of messenger RNA encoding its receptor in synaptic versus extrasynaptic compartments. Neuroscience 73:613–622

    Article  PubMed  CAS  Google Scholar 

  • Boudreau-Lariviere C, Gisiger V, Michel RN, Hubatsch DA, Jasmin BJ (1997) Fast and slow skeletal muscles express a common basic profile of acetylcholinesterase molecular forms. Am J Physiol 272:C68–C76

    PubMed  CAS  Google Scholar 

  • Brenner T, Hamra-Amitay Y, Evron T, Boneva N, Seidman S, Soreq H (2003) The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis. FASEB J 17:214–222

    Article  PubMed  CAS  Google Scholar 

  • Bryk B, BenMoyal-Segal L, Podoly E, Livnah O, Eisenkraft A, Luria S, Cohen A, Yehezkelli Y, Hourvitz A, Soreq H (2005) Inherited and acquired interactions between ACHE and PON1 polymorphisms modulate plasma acetylcholinesterase and paraoxonase activities. J Neurochem 92:1216–1227

    Article  PubMed  CAS  Google Scholar 

  • Cangiano A, Lomo T, Lutzemberger L, Sveen O (1980) Effects of chronic nerve conduction block on formation of neuromuscular junctions and junctional AChE in the rat. Acta Physiol Scand 109:283–296

    Article  PubMed  CAS  Google Scholar 

  • Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    Article  PubMed  CAS  Google Scholar 

  • Choi RC, Man ML, Ling KK, Ip NY, Simon J, Barnard EA, Tsim KW (2001a) Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor. J Neurosci 21:9224–9234

    PubMed  CAS  Google Scholar 

  • Choi RC, Siow NL, Zhu SQ, Wan DC, Wong YH, Tsim KW (2001b) The cyclic AMP-mediated expression of acetylcholinesterase in myotubes shows contrasting activation and repression between avian and mammalian enzymes. Mol Cell Neurosci 17:732–745

    Article  PubMed  CAS  Google Scholar 

  • Coleman BA, Taylor P (1996) Regulation of acetylcholinesterase expression during neuronal differentiation. J Biol Chem 271:4410–4416

    Article  PubMed  CAS  Google Scholar 

  • Collier B, Katz HS (1971) The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion. J Physiol (Lond) 214:537–552

    CAS  Google Scholar 

  • Cresnar B, Crne-Finderle N, Breskvar K, Sketelj J (1994) Neural regulation of muscle acetylcholinesterase is exerted on the level of its mRNA. J Neurosci Res 38:294–299

    Article  PubMed  CAS  Google Scholar 

  • Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 6:147–190

    CAS  Google Scholar 

  • Darboux I, Barthalay Y, Piovant M, Hipeau-Jacquotte R (1996) The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J 15:4835–4843

    PubMed  CAS  Google Scholar 

  • Darreh-Shori T, Hellstrom-Lindahl E, Flores-Flores C, Guan ZZ, Soreq H, Nordberg A (2004) Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patients. J Neurochem 88:1102–1101

    Article  CAS  Google Scholar 

  • Dary O, Wedding RT (1990) Absence of substrate inhibition and freezing-inactivation of the mosquito acetylcholinesterase are caused by alterations of hydrophobic interactions. Biochim Biophys Acta 1039:103–109

    PubMed  CAS  Google Scholar 

  • Davidsson P, Blennow K, Andreasen N, Eriksson B, Minthon L, Hesse C (2001) Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer’s disease. Neurosci Lett 300:157–160

    Article  PubMed  CAS  Google Scholar 

  • Day T, Greenfield SA (2002) A non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurones in vitro: molecular mechanisms. Neuroscience 111:649–656

    Article  PubMed  CAS  Google Scholar 

  • De Jaco A, Augusti-Tocco G, Biagioni S (2002a) Alternative acetylcholinesterase molecular forms exhibit similar ability to induce neurite outgrowth. J Neurosci Res 70:756–765

    Article  PubMed  CAS  Google Scholar 

  • De Jaco A, Augusti-Tocco G, Biagioni S (2002b) Muscarinic acetylcholine receptors induce neurite outgrowth and activate the synapsin I gene promoter in neuroblastoma clones. Neuroscience 113:331–338

    Article  PubMed  Google Scholar 

  • Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6:708–716

    Article  PubMed  CAS  Google Scholar 

  • Decker MM, Berman HA (1990) Denervation-induced alterations of acetylcholinesterase in denervated and nondenervated muscle. Exp Neurol 109:247–255

    Article  PubMed  CAS  Google Scholar 

  • Deschenes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ (2003) Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J Biol Chem 278:5710–5717

    Article  PubMed  CAS  Google Scholar 

  • Deutsch VR, Pick M, Perry C, Grisaru D, Hemo Y, Golan-Hadari D, Grant A, Eldor A, Soreq H (2002) The stress-associated acetylcholinesterase variant AChE-R is expressed in human CD34(+) hematopoietic progenitors and its C-terminal peptide ARP promotes their proliferation. Exp Hematol 30:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Dolenc I, Crne-Finderle N, Erzen I, Sketelj J (1994) Satellite cells in slow and fast rat muscles differ in respect to acetylcholinesterase regulation mechanisms they convey to their descendant myofibers during regeneration. J Neurosci Res 37:236–246

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Xiang YY, Farchi N, Ju W, Wu Y, Chen L, Wang Y, Hochner B, Yang B, Soreq H, Lu WY (2004) Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24:8950–8960

    Article  PubMed  CAS  Google Scholar 

  • Dori A, Cohen J, Silverman WF, Pollack Y, Soreq H (2005) Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical development. Cereb Cortex 15:419–430

    Article  PubMed  Google Scholar 

  • Dupree JL, Bigbee JW (1994) Retardation of neuritic outgrowth and cytoskeletal changes accompany acetylcholinesterase inhibitor treatment in cultured rat dorsal root ganglion neurons. J Neurosci Res 39:567–575

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich G, Ginzberg D, Loewenstein Y, Glick D, Kerem B, Ben-Ari S, Zakut H, Soreq H (1994) Population diversity and distinct haplotype frequencies associated with ACHE and BCHE genes of Israeli Jews from trans-Caucasian Georgia and from Europe. Genomics 22:288–295

    Article  PubMed  CAS  Google Scholar 

  • Evron T, Benmoyal-Segal L, Lamm N, Geffen A, Soreq H (2005) RNA-targetted suppression of stress-induced allostasis in primate spinal cord neurons. Neurodegenerative Dis 2:16–27

    Article  CAS  Google Scholar 

  • Felder CE, Botti SA, Lifson S, Silman I, Sussman JL (1997) External and internal electrostatic potentials of cholinesterase models. J Mol Graph Model 15:318–327, 335–337

    Article  PubMed  CAS  Google Scholar 

  • Fernandez HL, Donoso JA (1988) Exercise selectively increases G4 AChE activity in fast-twitch muscle. J Appl Physiol 65:2245–2252

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Hodges-Savola CA (1992) Trophic regulation of acetylcholinesterase isoenzymes in adult mammalian skeletal muscles. Neurochem Res 17:115–124

    Article  PubMed  CAS  Google Scholar 

  • Fernandez HL, Ross GS, Nadelhaft I (1999) Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles. Brain Res 844:83–97

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Valle C, Rotundo RL (1989) Regulation of acetylcholinesterase synthesis and assembly by muscle activity. Effects of tetrodotoxin. J Biol Chem 264:14043–14049

    PubMed  CAS  Google Scholar 

  • Fishman EB, Siek GC, MacCallum RD, Bird ED, Volicer L, Marquis JK (1986) Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 19:246–252

    Article  PubMed  CAS  Google Scholar 

  • Fodero LR, Mok SS, Losic D, Martin LL, Aguilar MI, Barrow CJ, Livett BG, Small DH (2004) Alpha7-nicotinic acetylcholine receptors mediate an Abeta(1-42)-induced increase in the level of acetylcholinesterase in primary cortical neurones. J Neurochem 88:1186–1193

    Article  PubMed  CAS  Google Scholar 

  • Fremion F, Darboux I, Diano M, Hipeau-Jacquotte R, Seeger MA, Piovant M (2000) Amalgam is a ligand for the transmembrane receptor neurotactin and is required for neurotactin-mediated cell adhesion and axon fasciculation in Drosophila. EMBO J 19:4463–4472

    Article  PubMed  CAS  Google Scholar 

  • Geula C, Mesulam MM, Kuo CC, Tokuno H (1995) Postnatal development of cortical acetylcholinesterase-rich neurons in the rat brain: permanent and transient patterns. Exp Neurol 134:157–178

    Article  PubMed  CAS  Google Scholar 

  • Gilson MK, Straatsma TP, McCammon JA, Ripoll DR, Faerman CH, Axelsen PH, Silman I, Sussman JL (1994) Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science 263:1276–1278

    Article  PubMed  CAS  Google Scholar 

  • Gisiger V, Belisle M, Gardiner PF (1994) Acetylcholinesterase adaptation to voluntary wheel running is proportional to the volume of activity in fast, but not slow, rat hindlimb muscles. Eur J Neurosci 6:673–680

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350

    PubMed  CAS  Google Scholar 

  • Grassi J, Vigny M, Massoulie J (1982) Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J Neurochem 38:457–469

    Article  PubMed  CAS  Google Scholar 

  • Greene LA, Rukenstein A (1981) Regulation of acetylcholinesterase activity by nerve growth factor. Role of transcription and dissociation from effects on proliferation and neurite outgrowth. J Biol Chem 256:6363–6367

    PubMed  CAS  Google Scholar 

  • Greenfield SA (1991) A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal secretion to the generation of movement. Cell Mol Neurobiol 11:55–77

    Article  PubMed  CAS  Google Scholar 

  • Greenfield SA, Smith AD (1979) The influence of electrical stimulation of certain brain regions on the concentration of acetylcholinesterase in rabbit cerebrospinal fluid. Brain Res 177:445–459

    Article  PubMed  CAS  Google Scholar 

  • Greenfield SA, Cheramy A, Glowinski J (1983) Evoked release of proteins from central neurons in vivo. J Neurochem 40:1048–1057

    Article  PubMed  CAS  Google Scholar 

  • Greenfield SA, Jack JJ, Last AT, French M (1988) An electrophysiological action of acetylcholinesterase independent of its catalytic site. Exp Brain Res 70:441–444

    Article  PubMed  CAS  Google Scholar 

  • Greenfield SA, Day T, Mann EO, Bermudez I (2004) A novel peptide modulates alpha7 nicotinic receptor responses: implications for a possible trophic-toxic mechanism within the brain. J Neurochem 90:325–331

    Article  PubMed  CAS  Google Scholar 

  • Gregory EJ, Hodges-Savola CA, Fernandez HL (1989) Selective increase of tetrameric (G4) acetylcholinesterase activity in rat hindlimb skeletal muscle following short-term denervation. J Neurochem 53:1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Grifman M, Galyam N, Seidman S, Soreq H (1998) Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci USA 95:13935–13940

    Article  PubMed  CAS  Google Scholar 

  • Grisaru D, Lev-Lehman E, Shapira M, Chaikin E, Lessing JB, Eldor A, Eckstein F, Soreq H (1999) Human osteogenesis involves differentiation-dependent increases in the morphogenically active 3′ alternative splicing variant of acetylcholinesterase. Mol Cell Biol 19:788–795

    PubMed  CAS  Google Scholar 

  • Grisaru D, Pick M, Perry C, Sklan EH, Almog R, Goldberg I, Naparstek E, Lessing JB, Soreq H, Deutsch V (2006) Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol 176:27–35

    PubMed  CAS  Google Scholar 

  • Hasin Y, Avidan N, Bercovich D, Korczyn AD, Silman I, Beckmann JS, Sussman JL (2005) Analysis of genetic polymorphisms in acetylcholinesterase as reflected in different populations. Curr Alzheimer Res 2:207–218

    Article  PubMed  CAS  Google Scholar 

  • Hawkins CA, Greenfield SA (1992) Non-cholinergic action of exogenous acetylcholinesterase in the rat substantia nigra. I. Differential effects on motor behaviour. Behav Brain Res 48:153–157

    Article  PubMed  CAS  Google Scholar 

  • Haynes LW, Smith ME, Smyth DG (1984) Evidence for the neurotrophic regulation of collagen-tailed acetylcholinesterase in immature skeletal muscle by beta-endorphin. J Neurochem 42:1542–1551

    Article  PubMed  CAS  Google Scholar 

  • Hodges-Savola CA, Fernandez HL (1991) A role for acetylcholine-nicotinic receptor interactions in the selective increase of rat skeletal muscle G4 acetylcholinesterase following short-term denervation. J Neurochem 56:1423–1431

    Article  PubMed  CAS  Google Scholar 

  • Hodges-Savola CA, Fernandez HL (1995) A role for calcitonin gene-related peptide in the regulation of rat skeletal muscle G4 acetylcholinesterase. Neurosci Lett 190:117–120

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Jones SA, Budd TC, Greenfield SA (1997) Non-cholinergic, trophic action of recombinant acetylcholinesterase on mid-brain dopaminergic neurons. J Neurosci Res 49:207–218

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa NC (1984) 16S Acetylcholinesterase of the extracellular matrix is assembled within mouse muscle cells in culture. Biochem J 217:377–381

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Alarcon R (1998) Molecular interactions of acetylcholinesterase with senile plaques. J Physiol (Paris) 92:341–344

    Article  CAS  Google Scholar 

  • Inestrosa NC, Miller JB, Silberstein L, Ziskind-Conhaim L, Hall ZW (1983) Developmental regulation of 16S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. Exp Cell Res 147:393–405

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa NC, Moreno RD, Fuentes ME (1994) Monomeric amphiphilic forms of acetylcholinesterase appear early during brain development and may correspond to biosynthetic precursors of the amphiphilic G4 forms. Neurosci Lett 173:155–158

    Article  PubMed  CAS  Google Scholar 

  • Jasmin BJ, Gisiger V (1990) Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effect of running training in antagonist muscles. J Neurosci 10:1444–1454

    PubMed  CAS  Google Scholar 

  • Johnson G, Moore SW (2003) Human acetylcholinesterase binds to mouse laminin-1 and human collagen IV by an electrostatic mechanism at the peripheral anionic site. Neurosci Lett 337:37–40

    Article  PubMed  CAS  Google Scholar 

  • Kaizer RR, Correa MC, Spanevello RM, Morsch VM, Mazzanti CM, Goncalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Karpel R, Ben Aziz-Aloya R, Sternfeld M, Ehrlich G, Ginzberg D, Tarroni P, Clementi F, Zakut H, Soreq H (1994) Expression of three alternative cetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins. Exp Cell Res 210:268–277

    Article  PubMed  CAS  Google Scholar 

  • Karpel R, Sternfeld M, Ginzberg D, Guhl E, Graessmann A, Soreq H (1996) Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J Neurochem 66:114–123

    Article  PubMed  CAS  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377

    Article  PubMed  CAS  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H (1999) Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem Biol Interact 119–120:349–360

    Article  PubMed  Google Scholar 

  • Kitz RJ, Braswell LM, Ginsburg S (1970) On the question: is acetylcholinesterase an allosteric protein? Mol Pharmacol 6:108–121

    PubMed  CAS  Google Scholar 

  • Kondo I, Yamamoto M (1998) Genetic polymorphism of paraoxonase 1 (PON1) and susceptibility to Parkinson’s disease. Brain Res 806:271–273

    Article  PubMed  CAS  Google Scholar 

  • Krejci E, Coussen F, Duval N, Chatel JM, Legay C, Puype M, Vandekerckhove J, Cartaud J, Bon S, Massoulie J (1991) Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J 10:1285–1293

    PubMed  CAS  Google Scholar 

  • Krupka RM (1963) The mechanism of action of acetylcholinesterase: substrate inhibition and the binding of inhibitors. Biochemistry 2:76–82

    Article  PubMed  CAS  Google Scholar 

  • Lai KO, Chen Y, Po HM, Lok KC, Gong K, Ip NY (2004) Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signaling in muscle: implications in the regulation of acetylcholinesterase expression. J Biol Chem 279:13383–13392

    Google Scholar 

  • Lawler HC (1961) Turnover time of acetylcholinesterase. J Biol Chem 236:2296–2301

    PubMed  CAS  Google Scholar 

  • Layer PG (1983) Comparative localization of acetylcholinesterase and pseudocholinesterase during morphogenesis of the chicken brain. Proc Natl Acad Sci USA 80:6413–6417

    Article  PubMed  CAS  Google Scholar 

  • Layer PG (1990) Cholinesterases preceding major tracts in vertebrate neurogenesis. Bioessays 12:415–420

    Article  PubMed  CAS  Google Scholar 

  • Layer PG (1996) Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer’s disease. Neurochem Int 28:491–495

    Article  PubMed  CAS  Google Scholar 

  • Layer PG, Weikert T, Alber R (1993) Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res 273:219–226

    Article  PubMed  CAS  Google Scholar 

  • Legay C (2000) Why so many forms of acetylcholinesterase? Microsc Res Tech 49:56–72

    Article  PubMed  CAS  Google Scholar 

  • Legay C, Huchet M, Massoulie J, Changeux JP (1995) Developmental regulation of acetylcholinesterase transcripts in the mouse diaphragm: alternative splicing and focalization. Eur J Neurosci 7:1803–1809

    Article  PubMed  CAS  Google Scholar 

  • Legay C, Mankal FA, Massoulie J, Jasmin BJ (1999) Stability and secretion of acetylcholinesterase forms in skeletal muscle cells. J Neurosci 19:8252–8259

    PubMed  CAS  Google Scholar 

  • Li Y, Camp S, Rachinsky TL, Getman D, Taylor P (1991) Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem 266:23083–23090

    PubMed  CAS  Google Scholar 

  • Llinas RR, Greenfield SA (1987) On-line visualization of dendritic release of acetylcholinesterase from mammalian substantia nigra neurons. Proc Natl Acad Sci USA 84:3047–3050

    Article  PubMed  CAS  Google Scholar 

  • Loewi O, Navratil E (1926) Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch 214:689–696

    Article  CAS  Google Scholar 

  • Lomo T, Slater CR (1980) Control of junctional acetylcholinesterase by neural and muscular influences in the rat. J Physiol (Lond) 303:191–202

    CAS  Google Scholar 

  • Lomo T, Massoulie J, Vigny M (1985) Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. J Neurosci 5:1180–1187

    PubMed  CAS  Google Scholar 

  • Lucas CA, Kreutzberg GW (1985) Regulation of acetylcholinesterase secretion from neuronal cell cultures. 1. Actions of nerve growth factor, cytoskeletal inhibitors and tunicamycin. Neuroscience 14:349–360

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Fuentes ME, Taylor P (1994) Regulation of acetylcholinesterase mRNA stability by calcium during differentiation from myoblasts to myotubes. J Biol Chem 269:27216–27223

    PubMed  CAS  Google Scholar 

  • Luo ZD, Pincon-Raymond M, Taylor P (1996) Acetylcholinesterase and nicotinic acetylcholine receptor expression diverge in muscular dysgenic mice lacking the L-type calcium channel. J Neurochem 67:111–118

    Article  PubMed  CAS  Google Scholar 

  • Massoulie J (2002) The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11:130–143

    Article  PubMed  CAS  Google Scholar 

  • Massoulie J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S (1998) Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J Physiol (Paris) 92:183–190

    Article  CAS  Google Scholar 

  • Massoulie J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S (1999) The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem Biol Interact 119–120:29–42

    Article  PubMed  Google Scholar 

  • McKeon RJ, Vietje BP, Wells J (1989) Increase in acetylcholinesterase in the molecular layer of the dentate gyrus in the absence of septal inputs following selective granule cell lesions. Brain Res 503:317–321

    Article  PubMed  CAS  Google Scholar 

  • Meshorer E, Soreq H (2006) Virtues and woes of AChE alternative splicing in stress–related neuropathologies. Trends Neurosci (in press)

  • Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A, Glick D, Ben-Arie N, Soreq H (2002) Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295:508–512

    Article  PubMed  CAS  Google Scholar 

  • Meshorer E, Toiber D, Zurel D, Sahly I, Dori A, Cagnano E, Schreiber L, Grisaru D, Tronche F, Soreq H (2004) Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products. J Biol Chem 279:29740–29751

    Article  PubMed  CAS  Google Scholar 

  • Meshorer E, Bryk B, Toiber D, Cohen J, Podoly E, Dori A, Soreq H (2005) SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Mol Psychiatry 10:985–997

    Article  PubMed  CAS  Google Scholar 

  • Michel RN, Vu CQ, Tetzlaff W, Jasmin BJ (1994) Neural regulation of acetylcholinesterase mRNAs at mammalian neuromuscular synapses. J Cell Biol 127:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Mor I, Grisaru D, Titelbaum L, Evron T, Richler C, Wahrman J, Sternfeld M, Yogev L, Meiri N, Seidman S, Soreq H (2001) Modified testicular expression of stress-associated “readthrough” acetylcholinesterase predicts male infertility. FASEB J 15:2039–2041

    PubMed  CAS  Google Scholar 

  • Morel N, Leroy J, Ayon A, Massoulie J, Bon S (2001) Acetylcholinesterase H and T dimers are associated through the same contact. Mutations at this interface interfere with the C-terminal T peptide, inducing degradation rather than secretion. J Biol Chem 276:37379–37389

    Article  PubMed  CAS  Google Scholar 

  • Mutero A, Camp S, Taylor P (1995) Promoter elements of the mouse acetylcholinesterase gene. Transcriptional regulation during muscle differentiation. J Biol Chem 270:1866–1872

    Article  PubMed  CAS  Google Scholar 

  • Nijholt I, Farchi N, Kye M, Sklan EH, Shoham S, Verbeure B, Owen D, Hochner B, Spiess J, Soreq H, Blank T (2004) Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation. Mol Psychiatry 9:174–183

    Article  PubMed  CAS  Google Scholar 

  • Olivera S, Rodriguez-Ithurralde D, Henley JM (1999) Acetylcholinesterase potentiates [3H]fluorowillardiine and [3H]AMPA binding to rat cortical membranes. Neuropharmacology 38:505–512

    Article  PubMed  CAS  Google Scholar 

  • Olivera S, Rodriguez-Ithurralde D, Henley JM (2003) Acetylcholinesterase promotes neurite elongation, synapse formation, and surface expression of AMPA receptors in hippocampal neurones. Mol Cell Neurosci 23:96–106

    Article  PubMed  CAS  Google Scholar 

  • Owen A, Bird M (1995) Acetylcholine as a regulator of neurite outgrowth and motility in cultured embryonic mouse spinal cord. Neuroreport 6:2269–2672

    Article  PubMed  CAS  Google Scholar 

  • Paraoanu LE, Layer PG (2004) Mouse acetylcholinesterase interacts in yeast with the extracellular matrix component laminin-1beta. FEBS Lett 576:161–164

    Article  PubMed  CAS  Google Scholar 

  • Paraoanu LE, Layer PG (2005) Mouse AChE binds in vivo to domain IV of laminin-1beta. Chem Biol Interact 157–158:411–413

    Article  PubMed  CAS  Google Scholar 

  • Perrier AL, Massoulie J, Krejci E (2002) PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron 33:275–285

    Article  PubMed  CAS  Google Scholar 

  • Perrier NA, Salani M, Falasca C, Bon S, Augusti-Tocco G, Massoulie J (2005) The readthrough variant of acetylcholinesterase remains very minor after heat shock, organophosphate inhibition and stress, in cell culture and in vivo. J Neurochem 94:629–638

    Article  PubMed  CAS  Google Scholar 

  • Perry C, Sklan EH, Birikh K, Shapira M, Trejo L, Eldor A, Soreq H (2002) Complex regulation of acetylcholinesterase gene expression in human brain tumors. Oncogene 21:8428–8441

    Article  PubMed  CAS  Google Scholar 

  • Rakonczay Z, Matsuoka Y, Giacobini E (1991) Effects of L-beta-N-methylamino-L-alanine (L-BMAA) on the cortical cholinergic and glutamatergic systems of the rat. J Neurosci Res 29:121–126

    Article  PubMed  CAS  Google Scholar 

  • Rimer M, Randall WR (1999) Denervation of chicken skeletal muscle causes an increase in acetylcholinesterase mRNA synthesis. Biochem Biophys Res Commun 260:251–255

    Article  PubMed  CAS  Google Scholar 

  • Robertson RT (1987) A morphogenic role for transiently expressed acetylcholinesterase in developing thalamocortical systems? Neurosci Lett 75:259–264

    Article  PubMed  CAS  Google Scholar 

  • Robertson RT, Tijerina AA, Gallivan ME (1985) Transient patterns of acetylcholinesterase activity in visual cortex of the rat: normal development and the effects of neonatal monocular enucleation. Brain Res 353:203–214

    PubMed  CAS  Google Scholar 

  • Robertson RT, Ambe RK, Yu J (1989) Intraocular injections of tetrodotoxin reduce transiently expressed acetylcholinesterase activity in developing rat visual cortex. Brain Res Dev Brain Res 46:69–84

    Article  PubMed  CAS  Google Scholar 

  • Rosenberry TL (1975) Catalysis by acetylcholinesterase: evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. Proc Natl Acad Sci USA 72:3834–3838

    Article  PubMed  CAS  Google Scholar 

  • Rossi SG, Vazquez AE, Rotundo RL (2000) Local control of acetylcholinesterase gene expression in multinucleated skeletal muscle fibers: individual nuclei respond to signals from the overlying plasma membrane. J Neurosci 20:919–928

    PubMed  CAS  Google Scholar 

  • Rossi SG, Dickerson IM, Rotundo RL (2003) Localization of the calcitonin gene-related peptide receptor complex at the vertebrate neuromuscular junction and its role in regulating acetylcholinesterase expression. J Biol Chem 278:24994–25000

    Article  PubMed  CAS  Google Scholar 

  • Rotundo RL (1984) Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc Natl Acad Sci USA 81:479–483

    Article  PubMed  CAS  Google Scholar 

  • Rotundo RL (1988) Biogenesis of acetylcholinesterase molecular forms in muscle. Evidence for a rapidly turning over, catalytically inactive precursor pool. J Biol Chem 263:19398–19406

    PubMed  CAS  Google Scholar 

  • Rotundo RL, Fambrough DM (1980) Synthesis, transport and fate of acetylcholinesterase in cultured chick embryos muscle cells. Cell 22:583–594

    Article  PubMed  CAS  Google Scholar 

  • Rotundo RL, Gomez AM, Fernandez-Valle C, Randall WR (1988) Allelic variants of acetylcholinesterase: genetic evidence that all acetylcholinesterase forms in avian nerves and muscles are encoded by a single gene. Proc Natl Acad Sci USA 85:7805–7809

    Article  PubMed  CAS  Google Scholar 

  • Rotundo RL, Rossi SG, Kimbell LM, Ruiz C, Marrero E (2005) Targeting acetylcholinesterase to the neuromuscular synapse. Chem Biol Interact 157–158:15–21

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL (1985) Increases in muscle Ca2+ mediate changes in acetylcholinesterase and acetylcholine receptors caused by muscle contraction. Proc Natl Acad Sci USA 82:7121–7125

    Article  PubMed  CAS  Google Scholar 

  • Russell WS, Henson SM, Hussein AS, Tippins JR, Selkirk ME (2000 )Nippostrongylus brasiliensis: infection induces upregulation of acetylcholinesterase activity on rat intestinal epithelial cells. Exp Parasitol 96:222–230

    Article  PubMed  CAS  Google Scholar 

  • Saez-Valero J, Gonzalez-Garcia C, Cena V (2003) Acetylcholinesterase activation in organotypic rat hippocampal slice cultures deprived of oxygen and glucose. Neurosci Lett 348:123–125

    Article  PubMed  CAS  Google Scholar 

  • Schegg KM, Harrington LS, Neilsen S, Zweig RM, Peacock JH (1992) Soluble and membrane-bound forms of brain acetylcholinesterase in Alzheimer’s disease. Neurobiol Aging 13:697–704

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    Article  PubMed  CAS  Google Scholar 

  • Scholl FG, Scheiffele P (2003) Making connections: cholinesterase-domain proteins in the CNS. Trends Neurosci 26:618–624

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Camp S, Maulet Y, Newton M, MacPhee-Quigley K, Taylor SS, Friedmann T, Taylor P (1986) Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 319:407–409

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Maulet Y, Camp S, Taylor P (1988) Multiple messenger RNA species give rise to the structural diversity in acetylcholinesterase. J Biol Chem 263:18979–18987

    PubMed  CAS  Google Scholar 

  • Sekhar V, Dayanand Y, Reddy GR (1991) Cercal sensory regulation of acetylcholinesterase in nervous system of the cockroach, Periplaneta americana. Indian J Exp Biol 29:396–397

    PubMed  CAS  Google Scholar 

  • Shafferman A, Velan B, Ordentlich A, Kronman C, Grosfeld H, Leitner M, Flashner Y, Cohen S, Barak D, Ariel N (1992) Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J 11:3561–3568

    PubMed  CAS  Google Scholar 

  • Shafferman A, Ordentlich A, Barak D, Kronman C, Ber R, Bino T, Ariel N, Osman R, Velan B (1994) Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase. EMBO J 13:3448–3455

    PubMed  CAS  Google Scholar 

  • Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant AD, Grisaru D, Korner M, Ebstein RP, Soreq H (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet 9:1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Sidell N, Lucas CA, Kreutzberg GW (1984) Regulation of acetylcholinesterase activity by retinoic acid in a human neuroblastoma cell line. Exp Cell Res 155:305–309

    Article  PubMed  CAS  Google Scholar 

  • Sketelj J, Crne-Finderle N, Ribaric S, Brzin M (1991) Interactions between intrinsic regulation and neural modulation of acetylcholinesterase in fast and slow skeletal muscles. Cell Mol Neurobiol 11:35–54

    Article  PubMed  CAS  Google Scholar 

  • Sketelj J, Crne-Finderle N, Brzin M (1992) Influence of denervation on the molecular forms of junctional and extrajunctional acetylcholinesterase in fast and slow muscles of the rat. Neurochem Int 21(3):415–421

    Article  PubMed  CAS  Google Scholar 

  • Sklan EH, Lowenthal A, Korner M, Ritov Y, Landers DM, Rankinen T, Bouchard C, Leon AS, Rice T, Rao DC, Wilmore JH, Skinner JS, Soreq H (2004) Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci USA 101:5512–5517

    Article  PubMed  CAS  Google Scholar 

  • Small DH, Michaelson S, Marley PD, Friedhuber A, Hocking A, Livett BG (1993) Regulation of acetylcholinesterase secretion from perfused bovine adrenal gland and isolated bovine chromaffin cells. J Auton Nerv Syst 42:131–141

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Ben-Aziz R, Prody CA, Seidman S, Gnatt A, Neville L, Lieman-Hurwitz J, Lev-Lehman E, Ginzberg D, Lipidot-Lifson Y, et al (1990) Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G+C-rich attenuating structure. Proc Natl Acad Sci USA 87:9688–9692

    Article  PubMed  CAS  Google Scholar 

  • Sternfeld M, Ming G, Song H, Sela K, Timberg R, Poo M, Soreq H (1998) Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J Neurosci 18:1240–1249

    PubMed  CAS  Google Scholar 

  • Sternfeld M, Shoham S, Klein O, Flores-Flores C, Evron T, Idelson GH, Kitsberg D, Patrick JW, Soreq H (2000) Excess "read-through" acetylcholinesterase attenuates but the "synaptic" variant intensifies neurodeterioration correlates. Proc Natl Acad Sci USA 97:8647–8652

    Article  PubMed  CAS  Google Scholar 

  • Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–879

    Article  PubMed  CAS  Google Scholar 

  • Swerts JP, Le Van Thai A, Weber MJ (1984) Regulation of enzymes responsible for neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. II. Regulation of 16 S acetylcholinesterase by conditioned medium. Dev Biol 103:230–234

    Article  PubMed  CAS  Google Scholar 

  • Szegletes T, Mallender WD, Thomas PJ, Rosenberry TL (1999) Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a econdary effect. Biochemistry 38:122–133

    Article  PubMed  CAS  Google Scholar 

  • Thakkar M, Mallick BN (1991) Effect of REM sleep deprivation on rat brain acetylcholinesterase. Pharmacol Biochem Behav 39:211–214

    Article  PubMed  CAS  Google Scholar 

  • Tien LT, Fan LW, Sogawa C, Ma T, Loh HH, Ho IK (2004) Changes in acetylcholinesterase activity and muscarinic receptor bindings in mu-opioid receptor knockout mice. Brain Res Mol Brain Res 126:38–44

    Article  PubMed  CAS  Google Scholar 

  • Tsigelny I, Shindyalov IN, Bourne PE, Sudhof TC, Taylor P (2000) Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Protein Sci 9:180–185

    PubMed  CAS  Google Scholar 

  • Tsim KW, Choi RC, Dong TT, Wan DC (1997) A globular, not asymmetric, form of acetylcholinesterase is expressed in chick motor neurons: down-regulation toward maturity and after denervation. J Neurochem 68:479–487

    Article  PubMed  CAS  Google Scholar 

  • Tung EK, Choi RC, Siow NL, Jiang JX, Ling KK, Simon J, Barnard EA, Tsim KW (2004) P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions. Mol Pharmacol 66:794–806

    Article  PubMed  CAS  Google Scholar 

  • Vallette FM, Massoulie J (1991) Regulation of the expression of acetylcholinesterase by muscular activity in avian primary cultures. J Neurochem 56:1518–1525

    Article  PubMed  CAS  Google Scholar 

  • Velan B, Grosfeld H, Kronman C, Leitner M, Gozes Y, Lazar A, Flashner Y, Marcus D, Cohen S, Shafferman A (1991) The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580–Ala mutant. J Biol Chem 266:23977–23984

    PubMed  CAS  Google Scholar 

  • Walker CR, Wilson BW (1976) Regulation of acetylcholinesterase in cultured muscle by chemical agents and electrical stimulation. Neuroscience 1:191–196

    Article  PubMed  CAS  Google Scholar 

  • Weeber EJ, Atkins CM, Selcher JC, Varga AW, Mirnikjoo B, Paylor R, Leitges M, Sweatt JD (2000) A role for the beta isoform of protein kinase C in fear conditioning. J Neurosci 20:5906–5914

    PubMed  CAS  Google Scholar 

  • Weikert T, Rathjen FG, Layer PG (1990) Developmental maps of acetylcholinesterase and G4-antigen of the early chicken brain: long-distance tracts originate from AChE-producing cell bodies. J Neurobiol 21:482–498

    Article  PubMed  CAS  Google Scholar 

  • Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF, Younkin LH (1986) Molecular forms of acetylcholinesterases in Alzheimer’s disease. Fed Proc 45:2982–2988

    PubMed  CAS  Google Scholar 

  • Zheng JQ, Felder M, Connor JA, Poo MM (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368:140–144

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermona Soreq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerman, G., Soreq, H. Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell Tissue Res 326, 655–669 (2006). https://doi.org/10.1007/s00441-006-0239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0239-8

Keywords

Navigation