Skip to main content
Log in

5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We studied expression of the 5-HT1A receptor in cortical and limbic areas of the brain of the tree shrew. In situ hybridization with a receptor-specific probe and immunocytochemistry with various antibodies was used to identify distinct neurons expressing the receptor. In vitro receptor autoradiography with 3H-8-OH-DPAT (3H-8-hydroxy-2-[di-n-propylamino]tetralin) was performed to visualize receptor-binding sites. In the prefrontal, insular, and occipital cortex, 5-HT1A receptor mRNA was expressed in pyramidal neurons of layer 2, whereas 3H-8-OH-DPAT labeled layers 1 and 2 generating a columnar-like pattern in the prefrontal and occipital cortex. In the striate and ventral occipital cortex, receptor mRNA was present within layers 5 and 6 in pyramidal neurons and Meynert cells. Pyramid-like neurons in the claustrum and anterior olfactory nucleus also expressed the receptor. Principal neurons in hippocampal region CA1 expressed 5-HT1A receptor mRNA, and 3H-8-OH-DPAT labeled both the stratum oriens and stratum radiatum. CA3 pyramidal neurons displayed low 5-HT1A receptor expression, whereas granule neurons in the dentate gyrus revealed moderate expression of this receptor. In the amygdala, large pyramid-like neurons in the basal magnocellular nucleus strongly expressed the receptor. Immunocytochemistry with antibodies against parvalbumin, calbindin, and gamma aminobutyric acid (GABA) provided no evidence for 5-HT1A receptor expression in GABAergic neurons in cortical and limbic brain areas. Our data agree with previous findings showing that the 5-HT1A receptor mediates the modulation of glutamatergic neurons. Expression in the limbic and cortical areas suggested an involvement of 5-HT1A receptors in emotional and cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggleton JP (1993) The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci 16:328–333

    Article  CAS  PubMed  Google Scholar 

  • Allen GV, Saper CB, Hurley KM, Cechetto DF (1991) Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311:1–16

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Bassett JL (1989) Cholinergic innervation of the monkey amygdala: an immunohistochemical analysis with antisera to choline acetyltransferase. J Comp Neurol 281:337–361

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Behniea H, Kelly JL (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118:1099–1120

    Google Scholar 

  • Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14:281–299

    Article  PubMed  Google Scholar 

  • Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412

    Google Scholar 

  • Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

    Article  CAS  PubMed  Google Scholar 

  • Baizer JS (2001) Serotonergic innervation of the primate claustrum. Brain Res Bull 55:431–434

    Article  CAS  PubMed  Google Scholar 

  • Barros M, Mello EL, Maior RS, Muller CP, Souza Silva MA de, Carey RJ, Huston JP, Tomaz C (2003) Anxiolytic-like effects of the selective 5-HT1A receptor antagonist WAY 100635 in non-human primates. Eur J Pharmacol 482:197–203

    Article  CAS  PubMed  Google Scholar 

  • Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123:2189–2202

    Article  PubMed  Google Scholar 

  • Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Casanovas JM, Hervas I, Artigas F (1999) Postsynaptic 5-HT1A receptors control 5-HT release in the rat medial prefrontal cortex. NeuroReport 10:1441–1445

    CAS  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    CAS  PubMed  Google Scholar 

  • Chalmers DT, Watson SJ (1991) Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 561:51–60

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Clark L, Robbins TW (2004) Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. J Neurosci 24:1129–1135

    Google Scholar 

  • Cryan JF, Leonard BE (2000) 5-HT1A and beyond: the role of serotonin and its receptors in depression and the antidepressant response. Hum Psychopharmacol 15:113–135

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  CAS  PubMed  Google Scholar 

  • Edagawa Y, Saito H, Abe K (1998) 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex. Eur J Pharmacol 349:221–224

    Article  CAS  PubMed  Google Scholar 

  • Edagawa Y, Saito H, Abe K (1999) Stimulation of the 5-HT1A receptor selectively suppresses NMDA receptor-mediated synaptic excitation in the rat visual cortex. Brain Res 827:225–228

    Article  CAS  PubMed  Google Scholar 

  • Faull RLM, Mehler WR (1985) Thalamus. In: Paxinos G (ed) The rat nervous system. Academic Press, Australia, pp 129–168

    Google Scholar 

  • File SE, Gonzalez LE, Andrews N (1996) Comparative study of pre- and postsynaptic 5-HT1A receptor modulation of anxiety in two ethological animal tests. J Neurosci 16:4810–4815

    Google Scholar 

  • Flügge G (1995) Dynamics of central nervous 5-HT1A-receptors under psychosocial stress. J Neurosci 15:7132–7140

    Google Scholar 

  • Flügge G, Ahrens O, Fuchs E (1994) Monoamine receptors in the amygdaloid complex of the tree shrew (Tupaia belangeri). J Comp Neurol 343:597–608

    Article  PubMed  Google Scholar 

  • Flügge G, Kramer M, Rensing S, Fuchs E (1998) 5HT1A-receptors and behaviour under chronic stress: selective counteraction by testosterone. Eur J Neurosci 10:2685–2693

    PubMed  Google Scholar 

  • Flügge G, Pfender D, Rudolph S, Jarry H, Fuchs E (1999) 5HT1A-receptor binding in the brain of cyclic and ovariectomized female rats. J Neuroendocrinol 11:243–249

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Fries W, Distel H (1983) Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus. Proc R Soc Lond Biol 219:53–59

    CAS  PubMed  Google Scholar 

  • Fuchs E (1999) Tree shrews. In: Poole T (ed) The UFAW handbook on the care and management of laboratory animals, vol 1. Blackwell, London, pp 235–245

    Google Scholar 

  • Gallagher M, Chiba AA (1996) The amygdala and emotion. Curr Opin Neurobiol 6:221–227

    Article  CAS  PubMed  Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142

    Google Scholar 

  • Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 65:319–395

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Singer W (1995) Involvement of serotonin in developmental plasticity of kitten visual cortex. Eur J Neurosci 7:1146–1153

    Google Scholar 

  • Hajos M, Hajos-Korcsok E, Sharp T (1999) Role of the medial prefrontal cortex in 5-HT1A receptor-induced inhibition of 5-HT neuronal activity in the rat. Br J Pharmacol 126:1741–1750

    Google Scholar 

  • Hamon M, Gozlan H, El Mestikawy S, Emerit MB, Bolanos F, Schechter L (1990) The central 5-HT1A receptors: pharmacological, biochemical, functional, and regulatory properties. Ann N Y Acad Sci 600:114–129 (discussion 129–131)

    CAS  PubMed  Google Scholar 

  • Hesen W, Joëls M (1996) Modulation of 5HT1A responsiveness in CA1 pyramidal neurons by in vivo activation of corticosteroid receptors. J Neuroendocrinol 8:433–438

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Arvidsson U, Cullheim S, Millhorn D, Nicholas AP, Pieribone V, Seroogy K, Ulfhake B (2000) Multiple messengers in descending serotonin neurons: localization and functional implications. J Chem Neuroanat 18:75–86

    Article  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL (2003) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28:2077–2088

    Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986) Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376:85–96

    Article  CAS  PubMed  Google Scholar 

  • Joëls M, Hesen W, Kloet ER de (1991) Mineralocorticoid hormones suppress serotonin-induced hyperpolarization of rat hippocampal CA1 neurons. J Neurosci 11:2288–2294

    Google Scholar 

  • Jolas T, Schreiber R, Laporte AM, Chastanet M, De Vry J, Glaser T, Adrien J, Hamon M (1995) Are postsynaptic 5-HT1A receptors involved in the anxiolytic effects of 5-HT1A receptor agonists and in their inhibitory effects on the firing of serotonergic neurons in the rat? J Pharmacol Exp Ther 272:920–929

    CAS  PubMed  Google Scholar 

  • Keuker JI, Rochford CD, Witter MP, Fuchs E (2003) A cytoarchitectonic study of the hippocampal formation of the tree shrew (Tupaia belangeri). J Chem Neuroanat 26:1–15

    Article  PubMed  Google Scholar 

  • Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, Vergé D (1996) Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol 365:289–305

    Article  CAS  PubMed  Google Scholar 

  • Killackey HP, Rhoades RW, Bennett-Clarke CA (1995) The formation of a cortical somatotopic map. Trends Neurosci 18:402–407

    Article  CAS  PubMed  Google Scholar 

  • Koelle GB, Friedenwald JS (1949) A histochemical method for localizing cholinesterase activity. Proc Soc Exp Biol Med 70:617–622

    CAS  Google Scholar 

  • Korte SM, Meijer OC, Kloet ER de, Buwalda B, Keijser J, Sluyter F, Oortmerssen G van, Bohus B (1996) Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Res 736:338–343

    Article  CAS  PubMed  Google Scholar 

  • Kowianski P, Dziewiatkowski J, Kowianska J, Morys J (1999) Comparative anatomy of the claustrum in selected species: a morphometric analysis. Brain Behav Evol 53:44–54

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Aghajanian GK (2004) Serotonin (5-HT) suppresses electrophysiological effects of hallucinogens in rat prefrontal cortex. In: Annual Meeting Society for Neuroscience. 2004 Abstract Viewer/Itinerary Planner. Washington, DC. Society for Neuroscience, San Diego, Program no. 394.393

  • Lanfumey L, Hamon M (2000) Central 5-HT(1A) receptors: regional distribution and functional characteristics. Nucl Med Biol 27:429–435

    Google Scholar 

  • Lavoie B, Parent A (1991) Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J Comp Neurol 312:1–18

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (1992) Emotion and the amygdala. In: Aggleton JP (ed) The amygdala. Wiley-Liss, New York, pp 339–351

    Google Scholar 

  • Lesch KP (1991) 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 15:723–733

    Article  CAS  PubMed  Google Scholar 

  • LeVay S, Sherk H (1981) The visual claustrum of the cat. I. Structure and connections. J Neurosci 1:956–980

    CAS  PubMed  Google Scholar 

  • Li H, Fukuda M, Tanifuji M, Rockland KS (2003) Intrinsic collaterals of layer 6 Meynert cells and functional columns in primate V1. Neuroscience 120:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83

    Google Scholar 

  • Lopez JF, Vazquez DM, Chalmers DT, Watson SJ (1997) Regulation of 5-HT receptors and the hypothalamic-pituitary-adrenal axis. Implications for the neurobiology of suicide. Ann N Y Acad Sci 836:106–134

    CAS  PubMed  Google Scholar 

  • Lopez JF, Chalmers DT, Little KY, Watson SJ (1998) A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression.Biol Psychiatry 43:547-573

    Article  CAS  PubMed  Google Scholar 

  • Lyon DC, Jain N, Kaas JH (1998) Cortical connections of striate and extrastriate visual areas in tree shrews. J Comp Neurol 401:109–128

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1998) The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis. Biol Psychiatry 44:1118–1127

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Conrad CD, Kuroda Y, Frankfurt M, Magarinos AM, McKittrick C (1997) Prevention of stress-induced morphological and cognitive consequences. Eur Neuropsychopharmacol 7:S323–S328

    Article  PubMed  Google Scholar 

  • Meijer OC, Kloet ER de (1994) Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. Eur J Pharmacol 266:255–261

    Article  CAS  PubMed  Google Scholar 

  • Mendelson SD, Gorzalka BB (1986) Effects of 5-HT1A selective anxiolytics on lordosis behavior: interactions with progesterone. Eur J Pharmacol 132:323–326

    Article  CAS  PubMed  Google Scholar 

  • Meyer H, Palchaudhuri M, Scheinin M, Flügge G (2000) Regulation of alpha(2A)-adrenoceptor expression by chronic stress in neurons of the brain stem. Brain Res 880:147–158

    Article  CAS  PubMed  Google Scholar 

  • Monyer H, Markram H (2004) Interneuron diversity series: molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 27:90–97

    Google Scholar 

  • Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, Eckelman W, Herscovitch P, Charney DS, Drevets WC (2004) Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 24:589–591

    Google Scholar 

  • Newberry NR, Footitt DR, Papanastassiou V, Reynolds DJ (1999) Actions of 5-HT on human neocortical neurones in vitro. Brain Res 833:93–100

    Article  CAS  PubMed  Google Scholar 

  • Nitsch C, Scotti A, Sommacal A, Kalt G (1989) GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2(+)-binding protein parvalbumin. Neurosci Lett 105:263–268

    Article  CAS  PubMed  Google Scholar 

  • Norton TT, Rager G, Kretz R (1985) ON and OFF regions in layer IV of striate cortex. Brain Res 327:319–323

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    Article  CAS  PubMed  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 95:10734–10739

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain. Academic Press, San Diego

    Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97–122

    Article  CAS  PubMed  Google Scholar 

  • Pecins-Thompson M, Bethea CL (1999) Ovarian steroid regulation of serotonin-1A autoreceptor messenger RNA expression in the dorsal raphe of rhesus macaques. Neuroscience 89:267–277

    Google Scholar 

  • Pitkanen A, Amaral DG (1991) Demonstration of projections from the lateral nucleus to the basal nucleus of the amygdala: a PHA-L study in the monkey. Exp Brain Res 83:465–470

    CAS  PubMed  Google Scholar 

  • Pitkanen A, Amaral DG (1993a) Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation. J Comp Neurol 331:37–74

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen A, Amaral DG (1993b) Distribution of calbindin-D28k immunoreactivity in the monkey temporal lobe: the amygdaloid complex. J Comp Neurol 331:199–224

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen A, Stefanacci L, Farb CR, Go GG, LeDoux JE, Amaral DG (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 356:288–310

    Article  CAS  PubMed  Google Scholar 

  • Preece MA, Dalley JW, Theobald DE, Robbins TW, Reynolds GP (2004) Region specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study. Neuroscience 123:725–732

    Google Scholar 

  • Purves D, Riddle DR, LaMantia AS (1992) Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends Neurosci 15:362–368

    Article  CAS  PubMed  Google Scholar 

  • Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 95:14476–14481

    Article  CAS  PubMed  Google Scholar 

  • Reynhout K, Baizer JS (1999) Immunoreactivity for calcium-binding proteins in the claustrum of the monkey. Anat Embryol (Berl) 199:75–83

    Article  CAS  Google Scholar 

  • Romanski LM, LeDoux JE (1993) Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex 3:515–532

    Google Scholar 

  • Saudou F, Hen R (1994) 5-Hydroxytryptamine receptor subtypes: molecular and functional diversity. Adv Pharmacol 30:327–380

    CAS  PubMed  Google Scholar 

  • Schmitz D, Empson RM, Heinemann U (1995) Serotonin reduces inhibition via 5-HT1A receptors in area CA1 of rat hippocampal slices in vitro. J Neurosci 15:7217–7225

    Google Scholar 

  • Seress L, Gulyas AI, Freund TF (1991) Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey. J Comp Neurol 313:162–177

    Article  CAS  PubMed  Google Scholar 

  • Sherk H, LeVay S (1981) Visual claustrum: topography and receptive field properties in the cat. Science 212:87–89

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San Diego

    Google Scholar 

  • Sherwood CC, Lee PW, Rivara CB, Holloway RL, Gilissen EP, Simmons RM, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44

    Article  PubMed  Google Scholar 

  • Shi CJ, Cassell MD (1999) Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406:299–328

    Article  CAS  PubMed  Google Scholar 

  • Sibille E, Pavlides C, Benke D, Toth M (2000) Genetic inactivation of the serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J Neurosci 20:2758–2765

    Google Scholar 

  • Simpson MD, Lubman DI, Slater P, Deakin JF (1996) Autoradiography with [3H]8-OH-DPAT reveals increases in 5-HT(1A) receptors in ventral prefrontal cortex in schizophrenia. Biol Psychiatry 39:919–928

    Article  CAS  PubMed  Google Scholar 

  • Sorvari H, Soininen H, Paljarvi L, Karkola K, Pitkanen A (1995) Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 360:185–212

    CAS  PubMed  Google Scholar 

  • Stefanacci L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451:301–323

    Article  PubMed  Google Scholar 

  • Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res 708:209–214

    Article  CAS  PubMed  Google Scholar 

  • Tada K, Kasamo K, Ueda N, Suzuki T, Kojima T, Ishikawa K (1999) Anxiolytic 5-hydroxytryptamine1A agonists suppress firing activity of dorsal hippocampus CA1 pyramidal neurons through a postsynaptic mechanism: single-unit study in unanesthetized, unrestrained rats. J Pharmacol Exp Ther 288:843–848

    CAS  PubMed  Google Scholar 

  • Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69:1749–1757

    CAS  PubMed  Google Scholar 

  • Thenius E (1988) Spitzhörnchen. In: Grzimek B (ed) Grzimeks Enzyklopädie, Säugetiere, vol 2. Kindler, Munich, pp 1–12

    Google Scholar 

  • Tigges J, Shanta TR (1969) A stereotaxic brain atlas of the tree shrew (Tupaia glis). Williams & Wilkins, Baltimore

    Google Scholar 

  • Vergé D, Daval G, Marcinkiewicz M, Patey A, el Mestikawy S, Gozlan H, Hamon M (1986) Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J Neurosci 6:3474–3482

    Google Scholar 

  • Yasui Y, Breder CD, Saper CB, Cechetto DF (1991) Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol 303:355–374

    Article  CAS  PubMed  Google Scholar 

  • Yasuno F, Suhara T, Ichimiya T, Takano A, Ando T, Okubo Y (2004) Decreased 5-HT1A receptor binding in amygdala of schizophrenia. Biol Psychiatry 55:439–444

    Article  CAS  PubMed  Google Scholar 

  • Zhou FC, Patel TD, Swartz D, Xu Y, Kelley MR (1999) Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT1A binding sites. Brain Res Mol Brain Res 69:186–201

    Article  CAS  PubMed  Google Scholar 

  • Zilles K (1990) Cortex. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 757–802

    Google Scholar 

  • Zilles K, Zilles B, Schleicher A (1980) A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol (Berl) 159:335–360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of Stefanie Gleisberg and Miriam Vorwald is gratefully acknowledged. We also thank Nashat Abumaria for help with the 5-HT1A receptor clone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Flügge.

Additional information

This work was supported by the German Science Foundation (SFB 406; C4 to G.F.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palchaudhuri, M., Flügge, G. 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res 321, 159–172 (2005). https://doi.org/10.1007/s00441-005-1112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1112-x

Keywords

Navigation