Skip to main content
Log in

Anatomical evidence for glutamatergic transmission in primary sensory neurons and onto postganglionic neurons controlling penile erection in rats: an ultrastructural study with neuronal tracing and immunocytochemistry

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In male rats, the dorsal penile nerve (DPN) conveys sensory information from the genitals to the lumbosacral spinal segments of the spinal cord. DPN is the afferent limb of a reflex loop that supports reflexive erections, and that includes a network of spinal interneurons and autonomic and somatic motoneurons to the penis and perineal striated muscles. Autonomic efferent pathways to the penis relay in the major pelvic ganglion (MPG). Glutamate (Glu) is a likely candidate as a neurotransmitter of reflexive erections. Both AMPA and NMDA glutamatergic receptor subunits are present in the lumbosacral spinal cord, and AMPA and NMDA receptor antagonists block reflexive erections. In the present study, we used tract-tracing experiments combined with immunohistochemical and immunocytochemical techniques to ascertain the presence of Glu at two different levels of the network controlling reflexive erections. DPN afferents were localized in the dorsal horn of the lumbosacral cord and displayed the characteristics of either C-fibers or Aδ fibers. DPN terminals (some of them glutamatergic) were mainly distributed in the medial edge of the dorsal horn in the L6 spinal segment. GluR1 subunits were present in some DPN afferents, suggesting that they could be autoreceptors. DPN fibers were also present in the MPG, as were Glu terminals and GluR4 subunits. The results reveal the presence of Glu in DPN fibers and terminals and suggest that both the spinal cord and the MPG use glutamatergic transmission to control reflexive erections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aanonsen LM, Lei S, Wilcox GL (1990) Excitatory amino acid receptors and nociceptive neurotransmission in the rat spinal cord. Pain 41:309–321

    Article  PubMed  CAS  Google Scholar 

  • Aïoun J, Rampin O, Chambille I (2002) Neuroanatomical bases for a glutamatergic transmission in the rat pelvic ganglion: an immunocytochemical light— and electron microscopy study (abstract). 3rd Forum of European Neurosciences (FENS), 13-17 July, Paris

  • Battaglia G, Rustioni A (1988) Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. J Comp Neurol 277:302–312

    Article  PubMed  CAS  Google Scholar 

  • Bernabe J, Rampin O, Sachs BD, Giuliano F (1999) Intracavernous pressure during erection in rats: an integrative approach based on telemetric recording. Am J Physiol 276:R441–R449

    PubMed  Google Scholar 

  • Bitran D, Sachs BD (1989) Penile desensitization does not affect postcopulatory genital autogrooming in rats: evidence for central motor patterning. Physiol Behav 45:1001–1006

    Article  PubMed  CAS  Google Scholar 

  • Broman J, Anderson S, Ottersen OP (1993) Enrichment of glutamate—like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn. Eur J Neurosci 5:1050–1061

    Article  PubMed  CAS  Google Scholar 

  • Carlton SM, Hargett GL, Coggeshall RE (1998) Plasticity in alpha–amino–3–hydroxy–5–methyl–4–isoxazolepropionic acid receptor subunits in the rat dorsal horn following deafferentation. Neurosci Lett 242: 21–24

    Article  PubMed  CAS  Google Scholar 

  • Chambille I, Rampin O (2002) AMPA glutamatergic receptor-immunoreactive subunits are expressed in lumbosacral neurons of the spinal cord and neurons of the dorsal root and pelvic ganglia controlling pelvic functions in the rat. Brain Res 933:66–80

    Article  PubMed  CAS  Google Scholar 

  • Dail WG (1987) Autonomic control of penile erectile tissue. In: Heym C (ed) Histochemistry and cell biology of autonomic neurons and paraganglia. Springer, Berlin Heidelberg New York, pp 340–344

    Google Scholar 

  • Dail WG Jr, Evan AP, Eason HR (1975) The major ganglion in the pelvic plexus of the male rat. A histochemical and ultrastructural study. Cell Tissue Res 159:49–62

    Article  PubMed  CAS  Google Scholar 

  • Dail WG, Trujillo D, De la Rosa D, Walton G (1989) Autonomic innervation of reproductive organs: analysis of the neurons whose axons project in the main penile nerve in the pelvic plexus of the rat. Anat Rec 224:94–101

    Article  PubMed  CAS  Google Scholar 

  • De Biasi S, Rustioni A (1988) Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. Proc Natl Acad Sci USA 85:7820–7824

    Article  PubMed  Google Scholar 

  • Dougherty PM, Palecek J, Paleckova V, Sorkin LS, Willis WD (1992) The role of NMDA and non–NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli. J Neurosci 12:3025–3041

    PubMed  CAS  Google Scholar 

  • Gerke MB, Plenderleith MB (2004) Ultrastructural analysis of the central terminals of primary sensory neurones labelled by transganglionic transport of Bandeiraea simplicifolia I–isolectin B4. Neuroscience 127:165–175

    Article  PubMed  CAS  Google Scholar 

  • Gougis S, Prud’homme M–J, Rampin O (2002) Presence of the N–methyl–D–aspartic acid R1 glutamatergic receptor subunit in the lumbosacral spinal cord of male rats. Neurosci Lett 323:224–228

    Article  PubMed  CAS  Google Scholar 

  • Hancock MB, Peveto CA (1979) Preganglionic neurons in the sacral spinal cord of the rat: an HRP study. Neurosci Lett 11:1–5

    Article  PubMed  CAS  Google Scholar 

  • Hart BL (1968) Sexual reflexes and mating behaviour in the male rat. J Comp Physiol Psychol 65:453–460

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T, Zhang X, Wiesenfeld–Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17:22–30

    Article  PubMed  Google Scholar 

  • Ji Y, Traub RJ (2002) Differential effects of spinal CNQX on two populations of dorsal horn neurons responding to colorectal distension in the rat. Pain 99:217–222

    Article  PubMed  CAS  Google Scholar 

  • Johnson RD, Halata Z (1991) Topography and ultrastructure of sensory nerve endings in the glans penis of the rat. J Comp Neurol 312:299–310

    Article  PubMed  CAS  Google Scholar 

  • Kai–Kai MA, Howe R (1991) Glutamate-immunoreactivity in the trigeminal and dorsal root ganglia, and intraspinal neurons and fibres in the dorsal horn of the rat. Histochem J 23:171–179

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Gibson SJ, Su HC, Polak JM (1986) Composition and central projections of the pudendal nerve in the rat investigated by combined peptide immunocytochemistry and retrograde fluorescent labelling. Brain Res 372:313–322

    Article  PubMed  CAS  Google Scholar 

  • Keast JR, Booth AM, Groat WC de (1989) Distribution of neurons in the major pelvic ganglion of the rat which supply the bladder, colon or penis. Cell Tissue Res 256:105–112

    Article  PubMed  CAS  Google Scholar 

  • Keast JR, Stephensen TM (2000) Glutamate and aspartate immunoreactivity in dorsal root ganglion cells supplying visceral and somatic targets and evidence for peripheral axonal transport. J Comp Neurol 424:577–587

    Article  PubMed  CAS  Google Scholar 

  • Kerr RC, Maxwell DJ, Todd AJ (1998) GluR1 and GluR2/3 subunits of the AMPA–type glutamate receptor are associated with particular types of neurone in laminae I–III of the spinal dorsal horn of the rat. Eur J Neurosci 10:324–333

    Article  PubMed  CAS  Google Scholar 

  • Kurtz RG, Santos R (1979) Supraspinal influences on the penile reflexes of the male rat: a comparison of the effects of copulation, spinal transection, and cortical spreading depression. Horm Behav 12:73–94

    Article  PubMed  CAS  Google Scholar 

  • McKenna KE, Nadelhaft I (1986) The organization of the pudendal nerve in the male and female rat. J Comp Neurol 248:532–549

    Article  PubMed  CAS  Google Scholar 

  • McKenna KE, Nadelhaft I (1989) The pudendo-pudendal reflex in male and female rats. J Auton Nerv Syst 27:67–77

    Article  PubMed  CAS  Google Scholar 

  • McNeill DL, Papka RE, Harris CH (1992) CGRP immunoreactivity and NADPH–diaphorase in afferent nerves of the rat penis. Peptides 13:1239–1246

    Article  PubMed  CAS  Google Scholar 

  • Miller KE, Clements JR, Larson A, Beitz AJ (1988) Organization of glutamate—like immunoreactivity in the rat superficial dorsal horn: light and electron microscopic observations. Synapse 2:28–36

    Article  PubMed  CAS  Google Scholar 

  • Nadelhaft I, Booth AM (1984) The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: a horseradish peroxidase study. J Comp Neurol 248:532–549

    Google Scholar 

  • Nunez R, Gross GH, Sachs BD (1986) Origin and central projections of rat dorsal penile nerve: possible direct projection to autonomic and somatic neurons by primary afferents of non muscle origin. J Comp Neurol 247:417–429

    Article  PubMed  CAS  Google Scholar 

  • Papka RE (1990) Some nerve endings in the rat pelvic paracervical autonomic ganglia and varicosities in the uterus contain calcitonin gene-related peptide and originate from dorsal root ganglia. Neuroscience 39:459–470

    Article  PubMed  CAS  Google Scholar 

  • Papka RE, McNeill DL (1993) Light— and electron-microscopic study of synaptic connections in the paracervical ganglion of the female rat: special reference to calcitonin gene-related peptide−, galanin— and tachykinin (substance P and neurokinin A)−immunoreactive nerve fibers and terminals. Cell Tissue Res 271: 417–428

    PubMed  CAS  Google Scholar 

  • Pascual JI, Insausti R, Gonzalo LM (1992) Pudendal nerve topography in the rat spinal cord projections studied with the axonal tracer wheat germ agglutinin conjugated-horseradish peroxidase. J Urol 147:718–722

    PubMed  CAS  Google Scholar 

  • Pescatori ES, Calabro A, Arbitani W, Pagano F, Triban C, Italiano G (1993) Electrical stimulation of the dorsal nerve of the penis evokes reflex tonic erections of the penile body and reflex ejaculatory responses in the spinal rat. J Urol 149:627–632

    PubMed  CAS  Google Scholar 

  • Peytevin J, Aïoun J, Chambille I (2000) Neurons that express the AMPA receptor GluR2/3 subunits in suprachiasmatic nuclei of Syrian hamsters colocalize either vasoactive intestinal peptide, peptide histidine isoleucine or gastrin-releasing peptide. Cell Tissue Res 300:345–359

    Article  PubMed  CAS  Google Scholar 

  • Phend KD, Rustioni A, Weinberg J (1995) An osmium-free method of Epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J Histochem Cytochem 43:283–292

    PubMed  CAS  Google Scholar 

  • Popratiloff A, Weinberg RJ, Rustioni A (1996) AMPA receptors subunits underlying terminals of fine-diameter primary afferent fibers. J Neurosci 16:3363–3372

    PubMed  CAS  Google Scholar 

  • Radhakrishnan V, Henry JL (1993) Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord. Neuroscience 55:531–544

    Article  PubMed  CAS  Google Scholar 

  • Rampin O, Giuliano F, Dompeyre P, Rousseau JP (1994) Physiological evidence of neural pathways involved in reflexogenic penile erection in the rat. Neurosci Lett 180:138–142

    Article  PubMed  CAS  Google Scholar 

  • Rampin O, Gougis S, Giuliano F, Rousseau JP (1997) Spinal Fos labeling and penile erection elicited by stimulation of the dorsal nerve of the penis in the rat. Am J Physiol 272:R1425–R1431

    PubMed  CAS  Google Scholar 

  • Rampin O, Monnerie R, Jerôme N, McKenna K, Maurin Y (2004) Spinal control of erection by glutamate in rats. Am J Physiol 286:R710–R718

    CAS  Google Scholar 

  • Ribeiro–da–Silva A (1995) Substantia gelatinosa of spinal cord. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, San Diego, pp 47–59

    Google Scholar 

  • Sachs BD, Garinello LD (1979) Spinal pacemaker controlling sexual reflexes in male rats. Brain Res 171:152–156

    Article  PubMed  CAS  Google Scholar 

  • Steers WD, Mallory B, Groat WC de (1988) Electrophysiological study of neural activity in penile nerve of the rat. Am J Physiol 254:R989–R1000

    PubMed  CAS  Google Scholar 

  • Szurszewski JH, Ermilov LG, Miller SM (2002) Prevertebral ganglia and intestinofugal afferent neurones. Gut 51 (Suppl 1):6–10

    Article  PubMed  Google Scholar 

  • Tachibana M, Wenthold RJ, Morioka H, Petralia RS (1994) Light and electron microscopic immunocytochemical localization of AMPA–selective glutamate receptors in the rat spinal cord. J Comp Neurol 344:431–454

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Rampin O, Calas A, Facchinetti P, Giuliano F (1998) Oxytocinergic and serotonergic innervation of identified lumbosacral nuclei controlling penile erection in the male rat. Neuroscience 82:241–254

    Article  PubMed  CAS  Google Scholar 

  • Ueyama T, Arakawa H, Mizuno N (1987) Central distribution of efferent and afferent components of the pudendal nerve in rat. Anat Embryol 177:37–49

    Article  PubMed  CAS  Google Scholar 

  • Valtschanoff JG, Phend KD, Bernardi PS, Weinberg RJ, Rustioni A (1994) Amino acid immunocytochemistry of primary afferent terminals in the rat dorsal horn. J Comp Neurol 346:237–252

    Article  PubMed  CAS  Google Scholar 

  • Westlund KN, McNeill DL, Coggeshall RE (1989) Glutamate imunoreactivity in rat dorsal root axons. Neurosci Lett 96:13–17

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Mori S, Ueda S, Kawara M, Sano Y (1987) Improvement of the technique of immunohistochemical demonstration of bioactive substances in the central nervous system. Acta Histochem Cytochem 20:629–637

    CAS  Google Scholar 

  • Ye Z, Westlund KN (1996) Ultrastructural localization of glutamate receptor subunits (NMDAR1, AMPA GluR1 and GluR2/3) and spinothalamic tract cells. Neuroreport 7:2581–2585

    Article  PubMed  CAS  Google Scholar 

  • Yung KK (1998) Localization of glutamate receptors in dorsal horn of rat spinal cord. Neuroreport 9:1639–1644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge Dr. A. Saul for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiane Aïoun.

Additional information

This work was supported by grant no. 5R01MH059811–03 from the NIH and by an institutional grant from the Institut National de la Recherche Agronomique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aïoun, J., Rampin, O. Anatomical evidence for glutamatergic transmission in primary sensory neurons and onto postganglionic neurons controlling penile erection in rats: an ultrastructural study with neuronal tracing and immunocytochemistry. Cell Tissue Res 323, 359–375 (2006). https://doi.org/10.1007/s00441-005-0080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0080-5

Keywords

Navigation