Skip to main content

Advertisement

Log in

Redox imbalance

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Substantial evidence implies that redox imbalance attributable to an overproduction of reactive oxygen species or reactive nitrogen species that overwhelm the protective defense mechanism of cells contributes to all forms of Parkinson’s disease. Factors such as dopamine, neuromelanin, and transition metals may, under certain circumstances, contribute to the formation of oxygen species such as H2O2, superoxide radicals, and hydroxyl radicals and react with reactive nitrogen species such as nitric oxide or peroxinitrite. Mitochodrial dysfunction and excitotoxicity may be a cause and a result of oxidative stress. Consequences of this redox imbalance are lipid peroxidation, oxidation of proteins, DNA damage, and interference of reactive oxygen species with signal transduction pathways. These consequences become even more harmful when genetic variations impair the normal degradation of altered proteins. Therefore, therapeutic strategies must aim at reducing free-radical formation and scavenging free-radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: a selective increase in 8-hydroxyguanine in substantia nigra? J Neurochem 69:1196–1203

    CAS  PubMed  Google Scholar 

  • Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson’s disease. Arch Neurol 32:114–118

    CAS  PubMed  Google Scholar 

  • Antunes F, Han D, Rettori D, Cadenas E (2002) Mitochondrial damage by nitric oxide potentiated by dopmaine in PC12 cells. Biochim Biophys Acta 1556:233–238

    Article  CAS  PubMed  Google Scholar 

  • Barbeau A, Roy M, Cloutier T, Plasse L, Paris S (1987) Environmental and genetic factors in the etiology of Parkinson’s disease. Adv Neurol 45:299–306

    CAS  PubMed  Google Scholar 

  • Beal MF (2003) Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol 53:S39–S47

    Article  CAS  PubMed  Google Scholar 

  • Beck KD, Knusel B, Hefti F (1993) The nature of the trophic action of brain-derived neurotrophic factor, des(T-3)-insulin-like growth factor, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience 52:855–866

    Google Scholar 

  • Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    CAS  PubMed  Google Scholar 

  • Beckmann JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  PubMed  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JP, Youdim MB (1991a) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56:1441–1444

    Google Scholar 

  • Ben-Shachar, D, Riederer, P, Youdim, MB (1991b) Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57:1609–1614

    Google Scholar 

  • Berg D, Grote C, Rausch W-D, Mäurer M, Wesemann W, Riederer P, Becker G (1999a) Iron accumulation of the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25:901–904

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Roggendorf W, Schröder U, Klein R, Tatschner T, Benz P, Tucha O, Preier M, Lange KW, Reiners K, Gerlach M, Becker G (2002) Echogenicity of the substantia nigra—association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005

    Article  PubMed  Google Scholar 

  • Bharat S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64:1037–1048

    Article  PubMed  Google Scholar 

  • Borie C, Gasparini F, Verpillat P, Bonnet AM, Agid Y, Hetet G, Brice A, Durr A, Grandchamp B (2002) French Parkinson’s disease genetic study group. Association study between iron-related genes polymorphisms and Parkinson’s disease. J Neurol 249:801–804

    Google Scholar 

  • Braak H, Del Tredici K, Vos RA de, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Bredt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 31:577–596

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664

    Article  PubMed  Google Scholar 

  • Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Giuffrida Stella AM, Galli F, Butterfield DA (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25:437–444

    Article  CAS  PubMed  Google Scholar 

  • Carreras MC, Franco MC, Peralta JG, Poderoso JJ (2004) Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol Aspects Med 25:125–139

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry S, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114

    Article  CAS  PubMed  Google Scholar 

  • Chan TS, Teng S, Wilson JX, Galati G, Khan S, O’Brien PJ (2002) Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1). Free Radic Res 36:421–427

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Kim SW, Lee SY, Hwang O (2003) Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson’s disease. J Neurochem 86:143–152

    Google Scholar 

  • Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  Google Scholar 

  • D’Amato RJ, Lipman ZP, Snyder SH (1986) Selectivity of the Parkinson neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 231 987–989

    CAS  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6

    Article  CAS  PubMed  Google Scholar 

  • David GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat Res 1:249–PF Sz

    Article  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  • Deplazes J, Schobel K, Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Becker G, Riess O, Berg D (2004) Screening for mutations of the IRP2 gene in Parkinson’s disease patients with hyperechogenicity of the substantia nigra. J Neural Transm 111:515–521

    Article  CAS  PubMed  Google Scholar 

  • Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17:9060–9067

    Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    CAS  PubMed  Google Scholar 

  • Dexter DT, Sian J, Jenner P, Marsden CD (1993) Implications of alterations in trace element levels in brain in Parkinson’s disease and other neurological disorders affecting the basal ganglia. Adv Neurol 60:273–281

    CAS  PubMed  Google Scholar 

  • Double KL, Riederer P, Gerlach M (1999) Significance of neuromelanin for neurodegeneration in Parkinson’s disease. Drug News Perspect 12:333–340

    CAS  Google Scholar 

  • Double KL, Gerlach M, Youdim MBH, Riederer P (2000) Impaired iron homeostasis in Parkinson’s disease. J Neural Transm 60:37–58

    Google Scholar 

  • Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MB, Riederer P, Ben-Shachar D (2003a) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66:489–494

    Article  CAS  PubMed  Google Scholar 

  • Double KL, Halliday GM, Henderson J, Griffiths FM, Heinemann T, Riederer P, Gerlach M (2003b) The dopamine receptor agonist lisuride attenuates iron-mediated dopaminergic neurodegeneration. Exp Neurol 184:530–535

    Article  CAS  PubMed  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86:1142–1148

    Google Scholar 

  • Felletschin B, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, Sommer U, Zeiler B, Becker G, Riess O, Berg D (2003) Screening for mutations of the ferritin light and heavy genes in Parkinson’s disease patients with hyperechogenicity of the substantia nigra. Neurosci Lett 352:53–56

    Article  CAS  PubMed  Google Scholar 

  • Fiskum G, Starkov A, Polster BM, Chinopoulos C (2003) Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann N Y Acad Sci 991:111–119

    CAS  PubMed  Google Scholar 

  • Forsleff L, Schauss AG, Bier ID, Stuart S (1999) Evidence of functional zinc deficiency in Parkinson’s disease. J Altern Complement Med 5:57–64

    CAS  PubMed  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglia activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  CAS  PubMed  Google Scholar 

  • Gasser T (2003) Molecular genetics of Parkinon’s disease. In: Calne D, Calne S (eds) Parksinon’s disease. Advances in neurology, vol 86. Lippincott, Philadelphia, pp 23–32

    Google Scholar 

  • Gerber GB, Leonard A, Hantson P (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42:25–34

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MB (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases. J Neurochem 63:793–807

    Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and exitotoxic amino acids. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Parkinson’s disease. Advances in neurology, vol 69. Lippincott, Philadelphia, pp 177–194

    Google Scholar 

  • Gerlach M, Reichmann H, Riederer P (2001) Die Parkinsonkrankheit, Grundlagen, Klinik, Therapie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Giasson BI, Duda JE, Murray ChenQ IV, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 3:985–989

    Article  Google Scholar 

  • Goetz ME, Gerlach M (2004) Formation of radicals. In: Herdegen T, Delgado-Garcia J (eds) Brain damage and repair. Kluwer, London, pp 135–164

    Google Scholar 

  • Golbe LI, Mouradian MM (2004) Alpha-synuclein in Parkinson’s disease: light from two new angles. Ann Neurol 55:153–156

    Google Scholar 

  • Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B (2002) Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem 277:16116–16123

    Article  CAS  PubMed  Google Scholar 

  • Good P, Olanow C, Perl D (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson’s disease: a LAMMA study. Brain 593:343–346

    Article  CAS  PubMed  Google Scholar 

  • Götz ME, Künig G, Riederer P, Youdim MBH (1994) Oxidative stress. Free radical production in neural degeneration. Pharmacol Ther 63:37–122

    Article  PubMed  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20:239–247

    CAS  PubMed  Google Scholar 

  • Graumann R, Paris I, Martinez-Alvarado P, Rumanque P, Perez-Pastene C, Cardenas SP, Marin P, Diaz-Grez F, Caviedes R, Caviedes P, Segura-Aguilar J (2002) Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Pol J Pharmacol 54:573–579

    CAS  PubMed  Google Scholar 

  • Grisham MB, Jourd’Heul D, Wink DA (1999) Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am J Physiol 276:315–321

    Google Scholar 

  • Gu M, Cooper JM, Taanman JW, Schapira AHV (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186

    CAS  PubMed  Google Scholar 

  • Gu G, Reyes PE, Golden GT, Woltjer RL, Hulette C, Montine TJ, Zhang J (2002) Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 61:634–639

    Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on non-haem iron in the human brain. J Neurochem 3:41–51

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2003) Free radicals in biology and medicine. Oxford University, New York

    Google Scholar 

  • HaMai D, Bondy SC (2004) Oxidative basis of manganese neurotoxicity. Ann N Y Acad Sci 1012:129–141

    Article  PubMed  Google Scholar 

  • Hashimoto M, Hsu LJ, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E (1998) Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 799:301–306

    Article  CAS  PubMed  Google Scholar 

  • He Y, Thong PS, Lee T, Leong SK, Shi CY, Wong PT, Yuan SY, Watt F (1996) Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res 735:149–153

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, Zeiler B, Bornemann A, Pahnke J, Becker G, Riess O, Berg D (2004) Ceruloplasmin gene variations are associated with substantia nigra hyperechogenicity in Parkinson’s disease. Neurology (in press)

  • Hoglinger GU, Carrard G, Michel PP, Medja F, Lombes A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86:1297–1307

    Google Scholar 

  • Hunot S, Dugas N, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC (1999) Fcepsilon-RII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19:3440–3447

    CAS  PubMed  Google Scholar 

  • Iravani MM, Kashefi K, Mander P, Rose S, Jenner P (2002) Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110:49–58

    Google Scholar 

  • Jahngen-Hodge J, Obin MS, Gong X, Shang F, Nowell TR Jr, Gong J, Abasi H, Blumberg J, Taylor A (1997) Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem 272:28218–28226

    Article  CAS  PubMed  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachellberger H, Ben-Shachar D, Youdim MB (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59:1168–1171

    Google Scholar 

  • Jenner P (1993) Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl 146:6–13

    CAS  PubMed  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S38

    Article  CAS  PubMed  Google Scholar 

  • Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44:S72–S84

    CAS  PubMed  Google Scholar 

  • Jimenez-Jimenez FJ, Molina JA, Aguilar MV, Meseguer I, Mateos-Vega CJ, Gonzalez-Munoz MJ, Bustos F de, Martinez-Salio A, Orti-Pareja M, Zurdo M, Martinez-Para MC (1998) Cerebrospinal fluid levels of transition metals in patients with Parkinson’s disease. J Neural Transm 105:497–505

    Google Scholar 

  • Junn E, Mouradian MM (2002) Human alpha-synuclein over-expression increases intracellular reactive oxygen species and suceptibility to dopamine. Neurosci Lett 320:146–150

    Article  CAS  PubMed  Google Scholar 

  • Kanthasamy AG, Kitazawa M, Kaul S, Yang Y, Lahiri DK, Anantharam V, Kanthasamy A (2003) Proteolytic activation of proapoptotic kinase PKCdelta is regulated by overexpression of Bcl-2: implications for oxidative stress and environmental factors in Parkinson’s disease. Ann N Y Acad Sci 1010:683–686

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim JM, Kim JW, Yoo CI, Lee CR, Lee JH, Kim HK, Yang SO, Chung HK, Lee DS, Jeon B (2002) Dopamine transporter density is decreased in parkinsonian patients with a history of manganese exposure: what does it mean? Mov Disord 17:568–575

    Google Scholar 

  • Kish SJ, Morito CH, Hornykiewics (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neruosci Lett 58:343–346

    Article  CAS  Google Scholar 

  • Kotake Y, Ohta S (2003) MPP+ analogs acting on mitochondria and inducing neuro-degeneration. Curr Med Chem 10:2507–2516

    CAS  PubMed  Google Scholar 

  • Koutsilieri E, Scheller C, Tribl F, Riederer P (2002) Degeneration of neuronal cells due to oxidative stress—microglial contribution. Parkinsonism Relat Disord 8:401–406

    Article  CAS  PubMed  Google Scholar 

  • Kramer BC, Yabut JA, Cheong J, JnoBaptiste R, Robakis T, Olanow CW, Mytilineou C (2002) Lipopolysaccharide prevents cell death caused by glutathione depletion: possible mechanism of protection. Neuroscience 114:361–372

    Google Scholar 

  • Krishnan S, Chi EY, Wood SJ, Kendrick BS, Li C, Garzon-Rodriguez W, Wypych J, Randolph TW, Narhi LO, Biere AL, Citron M, Carpenter JF (2003) Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease α-synuclein fibrillogenesis. Biochemistry 42:829–837

    Article  CAS  PubMed  Google Scholar 

  • Lan J, Jiang DH (1997) Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson’s disease. J Neural Transm 104:649–660

    Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:989–990

    PubMed  Google Scholar 

  • Lee EN, Lee SY, Lee D, Kim J, Paik SR (2003) Lipid interaction of alpha-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2. J Neurochem 84:1128–1142

    Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    CAS  PubMed  Google Scholar 

  • Liu B, Gao H, Wang J, Jeohn G, Cooper C, Hong J (2002a) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 962:318–331

    CAS  PubMed  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002b) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    Google Scholar 

  • Lopiano L, Chiesa M, Digilio G, Giraudo S, Bergamasco B, Torre E, Fasano M (2000) Q-band EPR investigations of neuromelanin in control and Parkinson’s disease patients. Biochim Biophys 17:306–312

    Google Scholar 

  • Maharaj DS, Saravanan KS, Maharaj H, Mohanakumar KP, Daya S (2004) Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem Int 44:355–360

    Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569

    Google Scholar 

  • Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  PubMed  Google Scholar 

  • Martilla RJ, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of superoxide-dismutase-like activity in the substantia nigra and basal nucleus. J Neurol Sci 86:321–331

    Article  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2004) Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci 1012:37–50

    Article  CAS  PubMed  Google Scholar 

  • McNaught KSP, Jenner P (2000) Extracellular accumulation of nitric oxide, hydrogen peroxide and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition and/or lipopolysaccharide-induced activation. Biochem Pharmacol 60:979–988

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, Lopez-Real AM, Labandeira-Garcia JL (2002) Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1586:155–168

    CAS  PubMed  Google Scholar 

  • Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    CAS  PubMed  Google Scholar 

  • Mochizuki H, Imai H, Endo K, Yokomizo K, Murata Y, Hattori N, Mizuno Y (1994) Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 168:251–253

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150

    Article  CAS  PubMed  Google Scholar 

  • Münch G, Lüth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of α-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation. J Clin Neuroanat 20:253–257

    Google Scholar 

  • Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    Article  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Zhang J, Parvez H (2000) Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons. Toxicology 153:123–141

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H (2002) Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J Neural Transm 109:607–621

    Google Scholar 

  • Paik, S, Shin, H, Lee, J, Chang, C, Kim, J (1999) Copper(II)-induced self oligomerization of α-synuclein. Biochem J 340:821–828

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Azar CO, Segura-Aguilar J (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J Neurochem 77:519–529

    Google Scholar 

  • Plaitakis A, Shashidharan P (2000) Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol 247:S25–S35

    Google Scholar 

  • Power JH, Shannon JM, Blumbergs PC, Gai WP (2002) Nonselenium glutathione peroxidase in human brain: elevated levels in Parkinson’s disease and dementia with lewy bodies. Am J Pathol 161:885–894

    CAS  PubMed  Google Scholar 

  • Powers KM, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD, Checkoway H (2003) Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology 60:1761–1766

    CAS  PubMed  Google Scholar 

  • Practico D (2001) In vivo measurement of the redox state. Lipids 36:S45–S49

    PubMed  Google Scholar 

  • Rajput AH, Uitti RJ, Stern W, Laverty W (1986) Early onset Parkinson’s disease and childhood environment. Adv Neurol 45:295–297

    Google Scholar 

  • Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson’s disease: effects of iron and phosphorylating agents. J Neurochem 50:202–208

    CAS  PubMed  Google Scholar 

  • Reichmann H, Janetzky B (2000) Mitochondrial dysfunction—a pathogenetic factor in Parkinson’s disease. J Neurol 247:S63–S67

    Google Scholar 

  • Reichmann H, Riederer P (1989) Biochemical analyses of respiratory chain enzymes in different brain regions of patients with Parkinson’s disease. BMFT Symposium “Morbus Parkinson und andere Basalganglienerkrankungen”, Bad Kissingen (Abstract S 44)

  • Reif DW, Simmons RD (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283:537–541

    CAS  PubMed  Google Scholar 

  • Riederer P, Youdim MBH (eds) (1993) Iron in central nervous system disorders. Springer, Vienna

    Google Scholar 

  • Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi C, Sofic E, Danielczyk W, Fischer M, Ogris E (1988) Biochemical fundamentals of Parkinson’s disease. M Sinai J Med 55:21–28

    CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520

    Google Scholar 

  • Rossi L, Lombardo MF, Ciriolo MR, Rotilio G (2004) Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem Res 29:493–504

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ramos JR, Hefti F, Weiner WJ (1987) Paraquat and Parkinson’s disease. Neurology 37:728b

    Google Scholar 

  • Sanchez-Ramos JR, Övervik E, Ames BN (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 3:197–204

    Google Scholar 

  • Scherman D, Desnos C, Darchen F, Javoy-Agid F, Agid Y (1989) Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol 26:551–557

    CAS  PubMed  Google Scholar 

  • Schipper HM, Liberman A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150:60–68

    Article  CAS  PubMed  Google Scholar 

  • Shachar DB, Kahana N, Kampel V, Warshawsky A, Youdim MB (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacology 46:254–263

    Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Kato Y, Isobe K, Tanaka M, Naoi M, Osawa T (2003) An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J Neurosci Res 74:589–597

    Google Scholar 

  • Shaw CA, Bains JS (2002) Synergistic versus antagonistic actions of glutamate and glutathione: the role of excitotoxicity and oxidative stress in neuronal disease. Cell Mol Biol 48:127–136

    CAS  Google Scholar 

  • Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M (2002a) An in vitro model of Parkinson’s disease: Linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    Google Scholar 

  • Sherer TB, Betarbet R, Greenamyre JT (2002b) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197

    CAS  PubMed  Google Scholar 

  • Shima T, Sarna T, Swartz H, Stroppolo A, Gerbasi R, Zecca L (1997) Binding of iron to neuromelanin of human substantia nigra and synthetic neuromelanin: an electron paramagnetic resonance spectroscopy study. Free Radic Biol Med 23:110–119

    Article  CAS  PubMed  Google Scholar 

  • Shoham S, Youdim MB (2002) The effects of iron deficiency and iron and zinc supplementation on rat hippocampus ferritin. J Neural Transm 109:1241–1256

    Google Scholar 

  • Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of Parkinsonism. Ann Neurol 44:S160–S166

    CAS  PubMed  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’ s disease. Ann Neurol 36:356–361

    CAS  PubMed  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    CAS  PubMed  Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Article  CAS  PubMed  Google Scholar 

  • Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000) Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275:18344–18349

    Article  CAS  PubMed  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237:517–522

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38

    CAS  PubMed  Google Scholar 

  • Starkov AA, Polster BM, Fiskum G (2002) Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem 83:220–228

    Google Scholar 

  • Stewart VC, Heales SJR (2003) Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radic Biol Med 34:287–303

    Article  CAS  PubMed  Google Scholar 

  • Strijks E, Kremer HP, Horstink MW (1997) Q10 therapy in patients with idiopathic Parkinson’s disease. Mol Aspects Med 18 (Suppl):S237–S240

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M (2002) Mitochondrial genotypes and cytochrome b variants associated with longevity or Parkinson’s disease. J Neurol 249:III1–III8

    Google Scholar 

  • Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr (2000) Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 162:37–50

    Article  CAS  PubMed  Google Scholar 

  • Turnbull S, Tabner BJ, El-Agnaf OMA, Moore S, Davies Y, Allsop D (2001) α-Synuclein implicated in Parkinons’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med 30:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    Google Scholar 

  • Yoshida E, Mokuno K, Aoki SI, Takahashi A, Riku S, Murayama T, Yanagi T, Kato K (1994) Cerebrospinal fluid levels of superoxide dismutase. J Neurol Sci 124:25–31

    Google Scholar 

  • Youdim MB, Stephenson G, Ben Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325

    Google Scholar 

  • Zafar KS, Siddiqui A, Sayeed I, Ahmad M, Salim S, Islam F (2003) Dose-dependent protective effect of selenium in rat model of Parkinson’s disease: neurobehavioral and neurochemical evidences. J Neurochem 84:438–446

    Google Scholar 

  • Zareba M, Bober A, Korytowski W, Zecca L, Sarna T (1995) The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. Biochim Biophys Acta 1271:343–348

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Swartz HM (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin. J Neural Transm 5:203–213

    CAS  Google Scholar 

  • Zecca L, Mecacci O, Seraglia R, Parati E (1992) The chemical characterization of melanin contained in substantia nigra of human brain. Biochim Biophys Acta 1138:6–10

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin in substantia nigra of normal subjects at different ages, consequences for iron storage and neurodegenerative processes. J Neuochem 76:1766–1773

    Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral dopamine, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkisnon’s disease. FEBS Lett 510:216–220

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  CAS  PubMed  Google Scholar 

  • Zhu BT (2004) CNS dopamine oxidation and catechol-O-methyltransferase: importance in the etiology, pharmacotherapy, and dietary prevention of Parkinson’s disease. Int J Mol Med 13:343–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, D., Youdim, M.B.H. & Riederer, P. Redox imbalance. Cell Tissue Res 318, 201–213 (2004). https://doi.org/10.1007/s00441-004-0976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0976-5

Keywords

Navigation