Skip to main content

Advertisement

Log in

Contrast enhancement: a physiological effect of striatal dopamine?

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Dopamine functions as an important neuromodulator in the dorsal striatum and ventral striatum/nucleus accumbens. Evidence is accumulating for the idea that striatal neurons compete with each other for control over the animal’s motor resources, and that dopamine plays an important modulatory role that allows a particular subset of neurons, encoding a specific behavior, to predominate in this competition. One means by which dopamine could facilitate selection among competing neurons is to enhance the contrast between stronger and weaker excitations (or to increase the “signal to noise ratio” among neurons, where the firing of the most excited neurons is assumed to transmit signal and the firing of the least excited to transmit noise). Here, we review the electrophysiological evidence for this hypothesis and discuss potential cellular mechanisms by which dopamine-mediated contrast enhancement could occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:439–473

    Article  PubMed  Google Scholar 

  • Bekkers JM, Delaney AJ (2001) Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons. J Neurosci 21:6553–6560

    CAS  PubMed  Google Scholar 

  • Beurrier C, Malenka RC (2002) Enhanced inhibition of synaptic transmission by dopamine in the nucleus accumbens during behavioral sensitization to cocaine. J Neurosci 22:5817–5822

    CAS  PubMed  Google Scholar 

  • Brady AM, O’Donnell P (2004) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J Neurosci 24:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    CAS  PubMed  Google Scholar 

  • Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G (1987a) Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 20:757–771

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Misgeld U, Dodt HU (1987b) Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity. Neuroscience 20:293–303

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Benedetti M, Mercuri NB, Bernardi G (1988) Endogenous dopamine and dopaminergic agonists modulate synaptic excitation in neostriatum: intracellular studies from naive and catecholamine-depleted rats. Neuroscience 27:145–157

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, De Murtas M, Mercuri NB, Bernardi G (1992a) Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission. Ann Neurol 31:366–373

    CAS  PubMed  Google Scholar 

  • Calabresi P, Maj R, Mercuri NB, Bernardi G (1992b) Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 142:95–99

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992c) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12:4224–4233

    CAS  PubMed  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1992d) Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur J Neurosci 4:929–935

    PubMed  Google Scholar 

  • Calabresi P, Mercuri NB, Sancesario G, Bernardi G (1993) Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease. Brain 116(Pt 2):433–452

    PubMed  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1994) Post-receptor mechanisms underlying striatal long-term depression. J Neurosci 14:4871–4881

    CAS  PubMed  Google Scholar 

  • Calabresi P, De Murtas M, Pisani A, Stefani A, Sancesario G, Mercuri NB, Bernardi G (1995) Vulnerability of medium spiny striatal neurons to glutamate: role of Na+/K+ ATPase. Eur J Neurosci 7:1674–1683

    CAS  PubMed  Google Scholar 

  • Centonze D, Picconi B, Baunez C, Borrelli E, Pisani A, Bernardi G, Calabresi P (2002) Cocaine and amphetamine depress striatal GABAergic synaptic transmission through D2 dopamine receptors. Neuropsychopharmacology 26:164–175

    Article  CAS  PubMed  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90:9576–9580

    CAS  PubMed  Google Scholar 

  • Cepeda C, Chandler SH, Shumate LW, Levine MS (1995) Persistent Na+ conductance in medium-sized neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp recordings. J Neurophysiol 74:1343–1348

    CAS  PubMed  Google Scholar 

  • Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79:82–94

    CAS  PubMed  Google Scholar 

  • Chang JY, Janak PH, Woodward DJ (2000) Neuronal and behavioral correlations in the medial prefrontal cortex and nucleus accumbens during cocaine self-administration by rats. Neuroscience 99:433–443

    Article  CAS  PubMed  Google Scholar 

  • Charara A, Grace AA (2003) Dopamine receptor subtypes selectively modulate excitatory afferents from the hippocampus and amygdala to rat nucleus accumbens neurons. Neuropsychopharmacology 28:1412–1421

    Article  CAS  PubMed  Google Scholar 

  • Charpier S, Deniau JM (1997) In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation. Proc Natl Acad Sci USA 94:7036–7040

    Article  CAS  PubMed  Google Scholar 

  • Chen MT, Morales M, Woodward DJ, Hoffer BJ, Janak PH (2001) In vivo extracellular recording of striatal neurons in the awake rat following unilateral 6-hydroxydopamine lesions. Exp Neurol 171:72–83

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Lovinger DM (1997a) Decreased frequency but not amplitude of quantal synaptic responses associated with expression of corticostriatal long-term depression. J Neurosci 17:8613–8620

    CAS  PubMed  Google Scholar 

  • Choi S, Lovinger DM (1997b) Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc Natl Acad Sci USA 94:2665–2670

    Article  CAS  PubMed  Google Scholar 

  • Christie MJ, Summers RJ, Stephenson JA, Cook CJ, Beart PM (1987) Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience 22:425–439

    Article  CAS  PubMed  Google Scholar 

  • Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B (1999) Molecular diversity of K+ channels. Ann NY Acad Sci 868:233–285

    CAS  PubMed  Google Scholar 

  • Cooper DC, White FJ (2000) L-type calcium channels modulate glutamate-driven bursting activity in the nucleus accumbens in vivo. Brain Res 880:212–218

    Article  CAS  PubMed  Google Scholar 

  • Curran EJ, Watson SJ Jr (1995) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J Comp Neurol 361:57–76

    CAS  PubMed  Google Scholar 

  • Czubayko U, Plenz D (2002) Fast synaptic transmission between striatal spiny projection neurons. Proc Natl Acad Sci USA 99:15764–15769

    Article  CAS  PubMed  Google Scholar 

  • DeFrance JF, Sikes RW, Chronister RB (1985) Dopamine action in the nucleus accumbens. J Neurophysiol 54:1568–1577

    CAS  PubMed  Google Scholar 

  • Delgado A, Sierra A, Querejeta E, Valdiosera RF, Aceves J (2000) Inhibitory control of the GABAergic transmission in the rat neostriatum by D2 dopamine receptors. Neuroscience 95:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Dong Y, White FJ (2003) Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons. J Neurosci 23:2686–2695

    CAS  PubMed  Google Scholar 

  • Dray A (1980) The physiology and pharmacology of mammalian basal ganglia. Prog Neurobiol 14:221–335

    Article  CAS  PubMed  Google Scholar 

  • Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann NY Acad Sci 991:1–14

    CAS  Google Scholar 

  • Floresco SB, Blaha CD, Yang CR, Phillips AG (2001a) Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 21:6370–6376

    CAS  PubMed  Google Scholar 

  • Floresco SB, Blaha CD, Yang CR, Phillips AG (2001b) Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci 21:2851–2860

    CAS  PubMed  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    Article  CAS  PubMed  Google Scholar 

  • Flores-Hernandez J, Hernandez S, Snyder GL, Yan Z, Fienberg AA, Moss SJ, Greengard P, Surmeier DJ (2000) D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 83:2996–3004

    CAS  PubMed  Google Scholar 

  • Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, Calvert CR, Jokel ES, Fienberg AA, Greengard P, Levine MS (2002) Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 88:3010–3020

    CAS  PubMed  Google Scholar 

  • Galarraga E, Bargas J, Sierra A, Aceves J (1989) The role of calcium in the repetitive firing of neostriatal neurons. Exp Brain Res 75:157–168

    CAS  PubMed  Google Scholar 

  • Galarraga E, Pacheco-Cano MT, Flores-Hernandez JV, Bargas J (1994) Subthreshold rectification in neostriatal spiny projection neurons. Exp Brain Res 100:239–249

    CAS  PubMed  Google Scholar 

  • Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446–451

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    CAS  PubMed  Google Scholar 

  • Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978

    CAS  PubMed  Google Scholar 

  • Gonon F, Sundstrom L (1996) Excitatory effects of dopamine released by impulse flow in the rat nucleus accumbens in vivo. Neuroscience 75:13–18

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, O’Donnell P (2001a) Network synchrony in the nucleus accumbens in vivo. J Neurosci 21:4498–4504

    CAS  PubMed  Google Scholar 

  • Goto Y, O’Donnell P (2001b) Synchronous activity in the hippocampus and nucleus accumbens in vivo. J Neurosci 21:RC131

    CAS  PubMed  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136

    Article  CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001a) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84:401–410

    CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001b) A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84:411–423

    CAS  PubMed  Google Scholar 

  • Guzman JN, Hernandez A, Galarraga E, Tapia D, Laville A, Vergara R, Aceves J, Bargas J (2003) Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci 23:8931–8940

    CAS  PubMed  Google Scholar 

  • Harvey J, Lacey MG (1996) Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation. J Physiol 492(Pt 1):143–154

    CAS  PubMed  Google Scholar 

  • Heimer L, Zahm DS, Alheid GF (1995) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 579–628

  • Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342

    CAS  PubMed  Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  PubMed  Google Scholar 

  • Hjelmstad GO (2003) Dopamine differentually inhibits glutamate and GABA release during sustained synaptic transmission resulting in a net excitation of medium spiny neurons in the rat nucleus accumbens. Society for Neuroscience 33rd Annual Meeting, New Orleans, LA. Society for Neuroscience, program no 803.18

  • Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A (2003) Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein βγ subunits. J Neurosci 23:5079–5087

    CAS  PubMed  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–656

    Article  CAS  PubMed  Google Scholar 

  • Inase M, Li BM, Tanji J (1997) Dopaminergic modulation of neuronal activity in the monkey putamen through D1 and D2 receptors during a delayed Go/Nogo task. Exp Brain Res 117:207–218

    Article  CAS  PubMed  Google Scholar 

  • Jaeger D, Kita H, Wilson CJ (1994) Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. J Neurophysiol 72:2555–2558

    CAS  PubMed  Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates. Neuroscience 96: an analysis with respect to the functional and compartmental organization of the striatum

    Article  Google Scholar 

  • Kasanetz F, Riquelme LA, Murer MG (2002) Disruption of the two-state membrane potential of striatal neurones during cortical desynchronisation in anaesthetised rats. J Physiol 543:577–589

    Article  CAS  PubMed  Google Scholar 

  • Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci 1:411–416

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535

    Article  CAS  PubMed  Google Scholar 

  • Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85:117–124

    CAS  PubMed  Google Scholar 

  • Kish LJ, Palmer MR, Gerhardt GA (1999) Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and d-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats. Brain Res 833:58–70

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin EA (2002) Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism’s adaptive activity. Behav Brain Res 137:27–46

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin EA, Rebec GV (1996) Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol 75:142–153

    CAS  PubMed  Google Scholar 

  • Kiyatkin EA, Rebec GV (1997) Iontophoresis of amphetamine in the neostriatum and nucleus accumbens of awake, unrestrained rats. Brain Res 771:14–24

    Article  CAS  PubMed  Google Scholar 

  • Kombian SB, Malenka RC (1994) Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature 368:242–246

    Article  CAS  PubMed  Google Scholar 

  • Lauwereyns J, Watanabe K, Coe B, Hikosaka O (2002) A neural correlate of response bias in monkey caudate nucleus. Nature 418:413–417

    Article  CAS  PubMed  Google Scholar 

  • Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL (1996) Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24:65–78

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kauer JA (2004) Repeated exposure to amphetamine disrupts dopaminergic modulation of excitatory synaptic plasticity and neurotransmission in nucleus accumbens. Synapse 51:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lovinger DM, Tyler EC, Merritt A (1993) Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol 70:1937–1949

    CAS  PubMed  Google Scholar 

  • Mahon S, Delord B, Deniau JM, Charpier S (2000a) Intrinsic properties of rat striatal output neurones and time-dependent facilitation of cortical inputs in vivo. J Physiol 527(Pt 2):345–354

    CAS  PubMed  Google Scholar 

  • Mahon S, Deniau JM, Charpier S, Delord B (2000b) Role of a striatal slowly inactivating potassium current in short-term facilitation of corticostriatal inputs: a computer simulation study. Learn Mem 7:357–362

    Article  CAS  PubMed  Google Scholar 

  • Mahon S, Deniau JM, Charpier S (2001) Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb Cortex 11:360–373

    Article  CAS  PubMed  Google Scholar 

  • Mahon S, Casassus G, Mulle C, Charpier S (2003) Spike-dependent intrinsic plasticity increases firing probability in rat striatal neurons in vivo. J Physiol 550:947–959

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Kocsis JD (1988) Presynaptic actions of carbachol and adenosine on corticostriatal synaptic transmission studied in vitro. J Neurosci 8:3750–3756

    CAS  PubMed  Google Scholar 

  • Mermelstein PG, Song WJ, Tkatch T, Yan Z, Surmeier DJ (1998) Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J Neurosci 18:6650–6661

    CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Murer MG, Tseng KY, Kasanetz F, Belluscio M, Riquelme LA (2002) Brain oscillations, medium spiny neurons, and dopamine. Cell Mol Neurobiol 22:611–632

    Article  CAS  PubMed  Google Scholar 

  • Nambu A (2004) A new dynamic model of the cortico-basal ganglia loop. Prog Brain Res 143:461–466

    PubMed  Google Scholar 

  • Nicola SM, Malenka RC (1997) Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J Neurosci 17:5697–5710

    CAS  PubMed  Google Scholar 

  • Nicola SM, Malenka RC (1998) Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 79:1768–1776

    CAS  PubMed  Google Scholar 

  • Nicola SM, Kombian SB, Malenka RC (1996) Psychostimulants depress excitatory synaptic transmission in the nucleus accumbens via presynaptic D1-like dopamine receptors. J Neurosci 16:1591–1604

    CAS  PubMed  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  CAS  PubMed  Google Scholar 

  • Nisenbaum ES, Xu ZC, Wilson CJ (1994) Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J Neurophysiol 71:1174–1189

    CAS  PubMed  Google Scholar 

  • Nisenbaum ES, Wilson CJ, Foehring RC, Surmeier DJ (1996) Isolation and characterization of a persistent potassium current in neostriatal neurons. J Neurophysiol 76:1180–1194

    CAS  PubMed  Google Scholar 

  • O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429–435

    Article  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1994) Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Res 634:105–112

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639

    CAS  PubMed  Google Scholar 

  • O’Donnell P, Greene J, Pabello N, Lewis BL, Grace AA (1999) Modulation of cell firing in the nucleus accumbens. Ann NY Acad Sci 877:157–175

    CAS  PubMed  Google Scholar 

  • Pacheco-Cano MT, Bargas J, Hernandez-Lopez S, Tapia D, Galarraga E (1996) Inhibitory action of dopamine involves a subthreshold Cs(+)-sensitive conductance in neostriatal neurons. Exp Brain Res 110:205–211

    CAS  PubMed  Google Scholar 

  • Pennartz CM, Dolleman-Van der Weel MJ, Kitai ST, Lopes da Silva FH (1992a) Presynaptic dopamine D1 receptors attenuate excitatory and inhibitory limbic inputs to the shell region of the rat nucleus accumbens studied in vitro. J Neurophysiol 67:1325–1334

    CAS  PubMed  Google Scholar 

  • Pennartz CM, Dolleman-Van der Weel MJ, Lopes da Silva FH (1992b) Differential membrane properties and dopamine effects in the shell and core of the rat nucleus accumbens studied in vitro. Neurosci Lett 136:109–112

    Article  CAS  PubMed  Google Scholar 

  • Pennartz CM, Ameerun RF, Groenewegen HJ, Lopes da Silva FH (1993) Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur J Neurosci 5:107–117

    CAS  PubMed  Google Scholar 

  • Perez-Garci E, Bargas J, Galarraga E (2003) The role of Ca2+channels in the repetitive firing of striatal projection neurons. Neuroreport 14:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Rebec GV (1995) Iontophoresis in the neostriatum of awake, unrestrained rats: differential effects of dopamine, glutamate and ascorbate on motor- and nonmotor-related neurons. Neuroscience 67:313–324

    Article  CAS  PubMed  Google Scholar 

  • Plenz D (2003) When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci 26:436–443

    Article  CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JN, Wickens JR (2000) Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience 99:199–203

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413:67–70

    Article  CAS  PubMed  Google Scholar 

  • Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ (2002) Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA 99:8384–8388

    Article  CAS  PubMed  Google Scholar 

  • Robinson DL, Phillips PE, Budygin EA, Trafton BJ, Garris PA, Wightman RM (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12:2549–2552

    Article  CAS  PubMed  Google Scholar 

  • Robinson DL, Heien ML, Wightman RM (2002) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477–10486

    CAS  PubMed  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Thorpe SJ, Boytim M, Szabo I, Perrett DI (1984) Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 12:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Rothblat DS, Schneider JS (1993) Response of caudate neurons to stimulation of intrinsic and peripheral afferents in normal, symptomatic, and recovered MPTP-treated cats. J Neurosci 13:4372–4378

    CAS  PubMed  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526

    Article  CAS  PubMed  Google Scholar 

  • Rutherford A, Garcia-Munoz M, Arbuthnott GW (1988) An afterhyperpolarization recorded in striatal cells ‘in vitro’: effect of dopamine administration. Exp Brain Res 71:399–405

    CAS  PubMed  Google Scholar 

  • Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66:345–353

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Lledo PM, Vincent JD (1995) Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurones through a protein kinase A. J Physiol 483(Pt 1):95–107

    CAS  PubMed  Google Scholar 

  • Schneider JS (1991) Responses of striatal neurons to peripheral sensory stimulation in symptomatic MPTP-exposed cats. Brain Res 544:297–302

    Article  CAS  PubMed  Google Scholar 

  • Schramm NL, Egli RE, Winder DG (2002) LTP in the mouse nucleus accumbens is developmentally regulated. Synapse 45:213–219

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Hernandez-Lopez S, Tkatch T, Held JE, Surmeier DJ (2004) Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. J Neurophysiol 91:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Siggins GR (1978) Electrophysiological role of dopamine in the striatum: excitatory or inhibitory? In: Lipton MA, Killam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 143–157

  • Stern EA, Jaeger D, Wilson CJ (1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475–478

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Kitai ST (1993) D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog Brain Res 99:309–324

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA 89:10178–10182

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    CAS  PubMed  Google Scholar 

  • Taverna S, Van Dongen YC, Groenewegen HJ, Pennartz CM (2004) Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. J Neurophysiol 91:1111–1121

    Article  PubMed  Google Scholar 

  • Thomas MJ, Malenka RC, Bonci A (2000) Modulation of long-term depression by dopamine in the mesolimbic system. J Neurosci 20:5581–5586

    CAS  PubMed  Google Scholar 

  • Tkatch T, Baranauskas G, Surmeier DJ (2000) Kv4.2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons. J Neurosci 20:579–588

    CAS  PubMed  Google Scholar 

  • Tunstall MJ, Oorschot DE, Kean A, Wickens JR (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88:1263–1269

    PubMed  Google Scholar 

  • Uchimura N, Cherubini E, North RA (1989) Inward rectification in rat nucleus accumbens neurons. J Neurophysiol 62:1280–1286

    CAS  PubMed  Google Scholar 

  • Umemiya M, Raymond LA (1997) Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J Neurophysiol 78:1248–1255

    CAS  PubMed  Google Scholar 

  • Walsh JP (1993) Depression of excitatory synaptic input in rat striatal neurons. Brain Res 608:123–128

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Lauwereyns J, Hikosaka O (2003) Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. J Neurosci 23:10052–10057

    CAS  PubMed  Google Scholar 

  • West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22:294–304

    CAS  PubMed  Google Scholar 

  • Wickens JR, Wilson CJ (1998) Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. J Neurophysiol 79:2358–2364

    CAS  PubMed  Google Scholar 

  • Wickens JR, Begg AJ, Arbuthnott GW (1996) Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ (1998) Basal Ganglia. In: Shepherd GM (ed) The synaptic organization of the brain, 4th edn. Oxford University, New York, pp 329–375

  • Wilson CJ, Groves PM (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J Comp Neurol 194:599–615

    CAS  PubMed  Google Scholar 

  • Wilson CJ, Groves PM (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res 220:67–80

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16:2397–2410

    CAS  PubMed  Google Scholar 

  • Yan Z, Hsieh-Wilson L, Feng J, Tomizawa K, Allen PB, Fienberg AA, Nairn AC, Greengard P (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 2:13–17

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16:1922–1935

    CAS  PubMed  Google Scholar 

  • Yi BA, Lin YF, Jan YN, Jan LY (2001) Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29:657–667

    Article  CAS  PubMed  Google Scholar 

  • Yun IA, Nicola SM, Fields HL (2004a) Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. Eur J Neurosci 20:249–263

    Article  PubMed  Google Scholar 

  • Yun IA, Wakabayashi KT, Fields HL, Nicola SM (2004b) The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J Neurosci 24:2923–2933

    Article  CAS  PubMed  Google Scholar 

  • Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann NY Acad Sci 877:113–128

    CAS  PubMed  Google Scholar 

  • Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Hu XT, White FJ (1998) Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J Neurosci 18:488–498

    PubMed  Google Scholar 

  • Zhang XF, Cooper DC, White FJ (2002) Repeated cocaine treatment decreases whole-cell calcium current in rat nucleus accumbens neurons. J Pharmacol Exp Ther 301:1119–1125

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleem M. Nicola.

Additional information

This work was supported by funds provided by the State of California for medical research on alcohol and substance abuse through the University of California, San Francisco, and by NIH grant DA15676 to GOH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicola, S.M., Woodward Hopf, F. & Hjelmstad, G.O. Contrast enhancement: a physiological effect of striatal dopamine?. Cell Tissue Res 318, 93–106 (2004). https://doi.org/10.1007/s00441-004-0929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0929-z

Keywords

Navigation