Skip to main content
Log in

Effects of growth hormone on the ultrastructure of bovine preimplantation embryos

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Growth hormone (GH) has recently been shown to promote the development of preimplantation embryos. The aim of our study was therefore to analyze the effects of GH on the morphology and ultrastructure of the cells of bovine preimplantation embryos produced by in vitro fertilization (IVF). In order to determine the physiologically optimal morphology of blastocysts, ex vivo embryos obtained by uterine flushing were also included in the study. As shown by transmission electron microscopy, treatment with GH induced the elimination of glycogen storage in cells of the inner cell mass of 7-day-old embryos. GH also stimulated the exocytosis of lipid vesicles in the inner cell mass and trophectoderm cells of these embryos. Quantitative analysis of micrographs demonstrated a higher volume density of embryonic mitochondria in 7-day-old embryos cultured with GH than in control embryos. Treatment with GH regularly resulted in an improvement of the ultrastructural features of embryos produced in vitro, thus resembling the morphology of ex vivo embryos. Scanning electron-microscopy studies demonstrated that GH altered the structure and the pore size of the zona pellucida of blastocysts. Our studies imply that GH can modulate carbohydrate, lipid, and energy metabolism and influence transportation processes in the early IVF embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3a–d
Fig. 4a–f

Similar content being viewed by others

References

  • Abe H, Otoi T, Tachikawa S, Yamashita S, Satoh T, Hoshi H (1999a) Fine structure of bovine blastocysts in vivo and in vitro. Anat Embryol 199:519–527

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H (1999b) Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev 53:325–335

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Yamashita S, Satoh T, Hoshi H (2002) Accumulation of cytoplasmic droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev 61:57–66

    Article  CAS  PubMed  Google Scholar 

  • Bavister BD, Yanagimachi R (1977) The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol Reprod 16:228–237

    CAS  PubMed  Google Scholar 

  • Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE (2000) Ultrastructural morphometry of bovine compact morulae produced in vivo or in vitro. Biol Reprod 62:1459–1465

    CAS  PubMed  Google Scholar 

  • Davidson MB (1987) Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev 8:115–131

    CAS  PubMed  Google Scholar 

  • Devreker F, Englert Y (2000) In vitro development and metabolism of the human embryo up to the blastocyst stage. Eur J Obstet Gynecol Reprod Biol 92:51–56

    Article  CAS  PubMed  Google Scholar 

  • Eckert J, Pugh PA, Thompson JG, Niemann H, Tervit HR (1998) Exogenous protein affects developmental competence and metabolic activity of bovine pre-implantation embryos in vitro. Reprod Fertil Dev 10:327–332

    Article  CAS  PubMed  Google Scholar 

  • Farin PW, Crosier AE, Farin CE (2001) Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology 55:151–170

    Article  CAS  PubMed  Google Scholar 

  • Ferguson EM, Leese HJ (1999) Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil 116:373–378

    Article  CAS  PubMed  Google Scholar 

  • Fukaya T, Yamanaka T, Terada Y, Murakami T, Yajima A (1998) Growth hormone improves mouse embryo development in vitro, and the effect is neutralized by growth hormone receptor antibody. Tohoku J Exp Med 184:113–122

    CAS  PubMed  Google Scholar 

  • Garcia-Aragon J, Lobie PE, Muscat GEO, Goblus KS, Norstedt G, Waters MJ (1992) Prenatal expression of the growth hormone (GH) receptor/binding protein in the rat: a role for GH in embryonic and fetal development? Development 114:869–874

    CAS  PubMed  Google Scholar 

  • Gluckman PD, Grumbach MM, Kaplan SL (1981) The neuroendocrine regulation and function of growth hormone and prolactin in the mammalian fetus. Endocr Rev 2:363–395

    CAS  PubMed  Google Scholar 

  • Iwata H, Ohota M, Hashimoto S, Kimura K, Isaji M, Miyake M (2003) Stage-specific effect of growth hormone on developmental competence of bovine embryos produced in vitro. J Reprod Dev 49:493–499

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F, Tol HT van, Hage WG, Bevers MM (2000) Preimplantation bovine embryos express mRNA of growth hormone receptor and respond to growth hormone addition during in vitro development. Mol Reprod Dev 57:247–255

    Article  CAS  PubMed  Google Scholar 

  • Kennedy LG, Boland MP, Gordon I (1983) The effect of embryo quality at freezing on subsequent development of thawed cow embryos. Theriogenology 19:823–832

    Article  Google Scholar 

  • Kölle S, Sinowatz F, Boie G, Lincoln D, Palma G, Stojkovic M, Wolf E (1998) Topography of growth hormone receptor expression in the bovine embryo. Histochem Cell Biol 109:417–419

    Article  PubMed  Google Scholar 

  • Kölle S, Stojkovic M, Prelle K, Waters M, Wolf E, Sinowatz F (2001) Growth hormone (GH)/GH receptor expression and GH-mediated effects during early bovine embryogenesis. Biol Reprod 64:1826–1834

    PubMed  Google Scholar 

  • Kuran M, Robinson JJ, Staines ME, McEvoy TG (2001) Development and de novo protein synthetic activity of bovine embryos produced in vitro in different culture systems. Theriogenology 55:593–606

    Article  CAS  PubMed  Google Scholar 

  • Moreira F, Paula-Lopes FF, Hansen PJ, Badinga L, Thatcher WW (2002) Effects of growth hormone and insulin-like growth factor-I on development of in vitro derived bovine embryos. Theriogenology 57:895–907

    Article  CAS  PubMed  Google Scholar 

  • Mtango NR, Varisanga MD, Dong YJ, Rajamahendran R, Suzuki T (2003) Growth factors and growth hormone enhance in vitro embryo production and post-thaw survival of vitrified bovine blastocysts. Theriogenolgoy 59:1393–1402

    Article  CAS  Google Scholar 

  • Ohlsson C, Lövstedt K, Holmes PV, Nilsson A, Cralsson L, Törnell J (1993) Embryonic stem cells express growth hormone receptors: regulation by retinoic acid. Endocrinology 133:2897–2903

    Article  CAS  PubMed  Google Scholar 

  • Pantaleon M, Whiteside EJ, Harvey MB, Barnard RT, Waters MJ, Kaye PL (1997) Functional growth hormone receptors and GH are expressed by preimplantation mouse embryos: a role for GH in early embryogenesis? Proc Natl Acad Sci USA 94:5125–5130

    Article  CAS  PubMed  Google Scholar 

  • Parrish JJ, Susko-Parrish HL, Leibfried-Rutledge MI, Critser FS, Eyestone WH, First NY (1986) Bovine in vitro fertilization with frozen semen. Theriogenology 25:591–600

    Article  Google Scholar 

  • Rieger D, Loskutoff NM, Betteridge KJ (1992a) Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod Fertil Dev 4:547–557

    CAS  PubMed  Google Scholar 

  • Rieger D, Loskutoff N, Betteridge KJ (1992b) Developmentally regulated changes in the metabolism of glucose and glutamine by bovine embryos produced and co-cultured in vitro. J Reprod Fertil 95:585–595

    Article  CAS  PubMed  Google Scholar 

  • Scheven BAA, Hamilton NJ (1991) Longitudinal bone growth in vitro: effects of insulin-like growth factor I and growth hormone. Acta Endocrinol 24:602–607

    Google Scholar 

  • Stojkovic M, Westesen K, Zakhartchenko V, Stojkovic P, Boshammer K, Wolf E (1999) Coenzyme Q(10) in submicron-sized dispersion improves development, hatching, cell proliferation, and adenosine triphsphate content of in vitro produced bovine embryos. Biol Reprod 61:541–547

    CAS  PubMed  Google Scholar 

  • Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB, Wolf E (2001) Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in viro fertilization and culture. Biol Reprod 64:904–910

    CAS  PubMed  Google Scholar 

  • Strain AJ, Hill DJ, Swenne I, Milner RDG (1987) Regulation of DNA synthesis in human fetal hepatocytes by placental lactogen, growth hormone and IGF-I/SMX. J Cell Physiol 132:33–40

    CAS  PubMed  Google Scholar 

  • Sturmey RG, Leese HJ (2003) Energy metabolism in pig oocytes and early embryos. Reproduction 126:197–204

    Article  CAS  PubMed  Google Scholar 

  • Swenne I, Hill DJ, Strain AJ, Millner RDG (1987) Growth hormone regulation of SMC/IGF-I production and DNA replication in fetal rat islet in tissue culture. Diabetes 36:288–294

    CAS  PubMed  Google Scholar 

  • Terada Y, Fukaya T, Takahashi M, Yajima A (1996) Expression of growth hormone receptor in mouse preimplantation embryos. Mol Hum Reprod 2:879–881

    CAS  PubMed  Google Scholar 

  • Thompson JG (1997) Comparison between in vivo-derived and in vitro-produced pre-elongation embryos from domestic ruminants. Reprod Fertil Dev 9:341–354

    Article  CAS  PubMed  Google Scholar 

  • Thompson JG (2000) In vitro culture and embryo metabolism of cattle and sheep embryos—a decade of achievement. Anim Reprod Sci 60–61:263–275

    Article  CAS  PubMed  Google Scholar 

  • Walker SK, Heard TM, Bee CA, Frensham AB, Warnes DM, Seamark RF (1992) Culture of embryos in farm animals. In: Lauria A, Gandolfi F (eds) Embryonic development and manipulation in animal production. Portland, London, pp 77–92

  • Weibel ER (1979) Stereological methods: practical methods for biological morphometry. Academic Press, New York

    Google Scholar 

Download references

Acknowledgements

We thank Mrs. Christine Neumüller, Mrs. Katrin Berger, und Mrs. Gudrun Boie for excellent technical assistance. The help of Mrs. Heidrun School, Department of Parasitology, University of Munich with the scanning electron microscopy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Kölle.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (FOR 478/1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kölle, S., Stojkovic, M., Reese, S. et al. Effects of growth hormone on the ultrastructure of bovine preimplantation embryos. Cell Tissue Res 317, 101–108 (2004). https://doi.org/10.1007/s00441-004-0898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0898-2

Keywords

Navigation