Skip to main content

Advertisement

Log in

Juvenile myelomonocytic leukemia due to a germline CBL Y371C mutation: 35-year follow-up of a large family

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Juvenile myelomonocytic leukemia (JMML) is a pediatric myeloproliferative neoplasm that arises from malignant transformation of the stem cell compartment and results in increased production of myeloid cells. Somatic and germline variants in CBL (Casitas B-lineage lymphoma proto-oncogene) have been associated with JMML. We report an incompletely penetrant CBL Y371C mutation discovered by whole-exome sequencing in three individuals with JMML in a large pedigree with 35 years of follow-up. The Y371 residue is highly evolutionarily conserved among CBL orthologs and paralogs. In silico bioinformatics prediction programs suggested that the Y371C mutation is highly deleterious. Protein structural modeling revealed that the Y371C mutation abrogated the ability of the CBL protein to adopt a conformation that is required for ubiquitination. Clinically, the three mutation-positive JMML individuals exhibited variable clinical courses; in two out of three, primary hematologic abnormalities persisted into adulthood with minimal clinical symptoms. The penetrance of the CBL Y371C mutation was 30 % for JMML and 40 % for all leukemia. Of the 8 mutation carriers in the family with available photographs, only one had significant dysmorphic features; we found no evidence of a clinical phenotype consistent with a “CBL syndrome”. Although CBL Y371C has been previously reported in familial JMML, we are the first group to follow a complete pedigree harboring this mutation for an extended period, revealing additional information about this variant’s penetrance, function and natural history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  PubMed  Google Scholar 

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi:10.1038/nmeth0410-248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boltz MM, Enomoto LM, Ornstein RM, Saunders BD, Hollenbeak CS (2013) Incidence and survival differences of differentiated thyroid cancer among younger women. Clin Oncol Adolesc Young Adults 3:79–88

    Google Scholar 

  • Castro-Malaspina H, Schaison G, Passe S, Pasquier A, Berger R, Bayle-Weisgerber C, Miller D, Seligmann M, Bernard J (1984) Subacute and chronic myelomonocytic leukemia in children (juvenile CML). Clinical and hematologic observations, and identification of prognostic factors. Cancer 54:675–686

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. doi:10.1038/ng.806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT (2012) Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat Struct Mol Biol 19:184–192. doi:10.1038/nsmb.2231

    Article  CAS  PubMed  Google Scholar 

  • Hanson HL, Wilson MJ, Short JP, Chioza BA, Crosby AH, Nash RM, Marks KJ, Mansour S (2014) Germline CBL mutation associated with a noonan-like syndrome with primary lymphedema and teratoma associated with acquired uniparental isodisomy of chromosome 11q23. Am J Med Genet Part A 164:1003–1009. doi:10.1002/ajmg.a.36375

    Article  CAS  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312

    Article  CAS  PubMed  Google Scholar 

  • Kales SC, Ryan PE, Nau MM, Lipkowitz S (2010) Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res 70:4789–4794. doi:10.1158/0008-5472.CAN-10-0610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalra R, Paderanga DC, Olson K, Shannon KM (1994) Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 84:3435–3439

    CAS  PubMed  Google Scholar 

  • Kassenbrock CK, Anderson SM (2004) Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J Biol Chem 279:28017–28027. doi:10.1074/jbc.M404114200

    Article  CAS  PubMed  Google Scholar 

  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315. doi:10.1038/ng.2892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F (2011) Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci USA 108:20579–20584. doi:10.1073/pnas.1110712108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081. doi:10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  • Lee PS, Wang Y, Dominguez MG, Yeung YG, Murphy MA, Bowtell DD, Stanley ER (1999) The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J 18:3616–3628. doi:10.1093/emboj/18.13.3616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12:3663–3674. doi:10.1101/gad.12.23.3663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Jian X, Boerwinkle E (2013) dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat 34:E2393–E2402. doi:10.1002/humu.22376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, Curtiss NP, Gotlib J, Meshinchi S, Le Beau MM, Emanuel PD, Shannon KM (2004) Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103:2325–2331. doi:10.1182/blood-2003-09-3287

    Article  CAS  PubMed  Google Scholar 

  • Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergstraesser E, Bueso-Ramos CE, Emanuel PD, Hasle H, Issa JP, van den Heuvel-Eibrink MM, Locatelli F, Stary J, Trebo M, Wlodarski M, Zecca M, Shannon KM, Niemeyer CM (2009) Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114:1859–1863. doi:10.1182/blood-2009-01-198416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40:W622–W627. doi:10.1093/nar/gks540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyake S, Lupher ML, Druker B, Band H (1998) The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor α. Proc Natl Acad Sci 95:7927–7932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CBF, Langdon WY, Bowtell DDL (1998) Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 18:4872–4882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naramura M, Kole HK, Hu R-J, Gu H (1998) Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc Natl Acad Sci 95:15547–15552. doi:10.1073/pnas.95.26.15547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U, Haas O, Harbott J, Hasle H, Kerndrup G, Locatelli F, Mann G, Stollmann-Gibbels B, van’t Veer-Korthof ET, van Wering E, Zimmermann M (1997) Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood 89:3534–3543

    CAS  PubMed  Google Scholar 

  • Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ, Bunda S, Finklestein JZ, Sakamoto KM, Gorr TA, Mehta P, Schmid I, Kropshofer G, Corbacioglu S, Lang PJ, Klein C, Schlegel PG, Heinzmann A, Schneider M, Stary J, van den Heuvel-Eibrink MM, Hasle H, Locatelli F, Sakai D, Archambeault S, Chen L, Russell RC, Sybingco SS, Ohh M, Braun BS, Flotho C, Loh ML (2010) Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 42:794–800. doi:10.1038/ng.641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogawa S, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP, Sanada M (2010) Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clin Cancer Res 16:3825–3831. doi:10.1158/1078-0432.CCR-09-2341

    Article  CAS  PubMed  Google Scholar 

  • Perez B, Mechinaud F, Galambrun C, Ben Romdhane N, Isidor B, Philip N, Derain-Court J, Cassinat B, Lachenaud J, Kaltenbach S, Salmon A, Desiree C, Pereira S, Menot ML, Royer N, Fenneteau O, Baruchel A, Chomienne C, Verloes A, Cave H (2010) Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 47:686–691. doi:10.1136/jmg.2010.076836

    Article  CAS  PubMed  Google Scholar 

  • Rathinam C, Thien CBF, Langdon WY, Gu H, Flavell RA (2008) The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev 22:992–997. doi:10.1101/gad.1651408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369. doi:10.1146/annurev-genom-091212-153523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118. doi:10.1093/nar/gkr407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan PE, Sivadasan-Nair N, Nau MM, Nicholas S, Lipkowitz S (2010) The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme. J Biol Chem 285:23687–23698. doi:10.1074/jbc.M109.091157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–908. doi:10.1038/nature08240

    Article  CAS  PubMed  Google Scholar 

  • Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. doi:10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  • Shannon KM, O’Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F (1994) Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 330:597–601. doi:10.1056/NEJM199403033300903

    Article  CAS  PubMed  Google Scholar 

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, Ghiorzo P, Bressac-de Paillerets B, Nagore E, Avril MF, Caporaso NE, McMaster ML, Cullen M, Wang Z, Zhang X, Bruno W, Pastorino L, Queirolo P, Banuls-Roca J, Garcia-Casado Z, Vaysse A, Mohamdi H, Riazalhosseini Y, Foglio M, Jouenne F, Hua X, Hyland PL, Yin J, Vallabhaneni H, Chai W, Minghetti P, Pellegrini C, Ravichandran S, Eggermont A, Lathrop M, Peris K, Scarra GB, Landi G, Savage SA, Sampson JN, He J, Yeager M, Goldin LR, Demenais F, Chanock SJ, Tucker MA, Goldstein AM, Liu Y, Landi MT (2014) Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet. doi:10.1038/ng.2941

    Google Scholar 

  • Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65. doi:10.1002/humu.22225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart DR, Pemov A, Johnston JJ, Sapp JC, Yeager M, He J, Boland JF, Burdett L, Brown C, Gatti RA, Alter BP, Biesecker LG, Savage SA (2014) Dubowitz syndrome is a complex comprised of multiple, genetically distinct and phenotypically overlapping disorders. PLoS One 9:e98686. doi:10.1371/journal.pone.0098686

    Article  PubMed Central  PubMed  Google Scholar 

  • Strullu M, Caye A, Cassinat B, Fenneteau O, Touzot F, Blauwblomme T, Rodriguez R, Latour S, Petit A, Barlogis V, Galambrun C, Leblanc T, Baruchel A, Chomienne C, Cave H (2013) In hematopoietic cells with a germline mutation of CBL, loss of heterozygosity is not a signature of juvenile myelo-monocytic leukemia. Leukemia 27:2404–2407. doi:10.1038/leu.2013.203

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) World Health Organization classification of tumours of the haematopoietic and lymphoid tissues. 4th edn. International Agency for Research on Ancer, Lyon

  • Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hahlen K, Hasle H, Licht JD, Gelb BD (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34:148–150. doi:10.1038/ng1156

    Article  CAS  PubMed  Google Scholar 

  • Thien CB, Walker F, Langdon WY (2001) RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 7:355–365

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(Suppl 2):2246–2255

    Article  Google Scholar 

  • Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250. doi:10.1074/mcp.M500089-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This Project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Anand Pathak or Douglas R. Stewart.

Additional information

The members of NCI DCEG Cancer Genomics Research Laboratory and NCI DCEG Cancer Sequencing Working Group are listed in “Appendix”.

Electronic supplementary material

Appendix

Appendix

NCI DCEG Cancer Genomics Research Laboratory: Sara Bass, Joseph Boland, Laurie Burdette, Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. Hutchinson, Kristine Jones, Sally Larson, Kerrie Lashley, Hyo Jung Lee, Wen Luo, Michael Malasky, Michelle Manning, Jason Mitchell, David Roberson, Aurelie Vogt, Mingyi Wang, Meredith Yeager, Xijun Zhang.

NCI DCEG Cancer Sequencing Working Group: Bari Ballew, Stephen J. Chanock, Alisa M. Goldstein, Allan Hildesheim, Nan Hu, Maria Teresa Landi, Jennifer Loud, Phuong L. Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Melissa Rotunno, Sharon A. Savage, Philip R. Taylor, Geoffrey S. Tobias, Margaret A. Tucker, Jeannette Wong, Xiaohong R. Yang, Guoqin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A., Pemov, A., McMaster, M.L. et al. Juvenile myelomonocytic leukemia due to a germline CBL Y371C mutation: 35-year follow-up of a large family. Hum Genet 134, 775–787 (2015). https://doi.org/10.1007/s00439-015-1550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1550-9

Keywords

Navigation