Skip to main content
Log in

Polymorphisms near SOCS3 are associated with obesity and glucose homeostasis traits in Hispanic Americans from the Insulin Resistance Atherosclerosis Family Study

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The SOCS3 gene product participates in the feedback inhibition of a range of cytokine signals. Most notably, SOCS3 inhibits the functioning of leptin and downstream steps in insulin signaling after being expressed by terminal transcription factors, such as STAT3 and c-fos. The SOCS3 gene is located in the chromosome region 17q24-17q25, previously linked to body mass index (BMI), visceral adipose tissue (VAT), and waist circumference (WAIST) in Hispanic families in the Insulin Resistance Atherosclerosis Family Study (IRASFS). A high density map of 1,536 single nucleotide polymorphisms (SNPs) was constructed to cover a portion of the 17q linkage interval in 1,425 Hispanic subjects from 90 extended families in IRASFS. Analysis of this dense SNP map data revealed evidence of association of rs9914220 (located 10 kb 5′ of the SOCS3 gene) with BMI, VAT, and WAIST (P-value ranging from 0.003 to 0.017). Using a tagging SNP approach, rs9914220 and 22 additional SOCS3 SNPs were genotyped for genetic association analysis with measures of adiposity and glucose homeostasis. The adiposity phenotypes utilized in association analyses included BMI, WAIST, waist to hip ratio (WHR), subcutaneous adipose tissue, VAT, and visceral to subcutaneous ratio (VSR). Linkage disequilibrium calculations revealed three haplotype blocks near SOCS3. Haplotype Block 3 (5′ of SOCS3) contained SNPs consistently associated with BMI, WAIST, WHR, and VAT (P-values ranging from 2.00 × 10−4 to 0.036). Haplotype Block 1 contained single-SNPs that were associated with most adiposity traits except for VSR (P-values ranging from 0.002 to 0.047). When trait associated SNPs were included in linkage analyses as covariates, a reduction of VAT LOD score from 1.26 to 0.76 above the SOCS3 locus (110 cM) was observed. Multi-SNP haplotype testing using the quantitative pedigree disequilibrium test was broadly consistent with the single-SNP associations. In conclusion, these results support a role for SOCS3 genetic variants in human obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barrett JC, Fry B, Maller J et al (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  • Buetow KH, Edmonson M, MacDonald R et al (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 98:581–584

    Article  PubMed  CAS  Google Scholar 

  • Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942

    Article  PubMed  CAS  Google Scholar 

  • Coppari R, Ichinose M, Lee CE et al (2005) The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab 1(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Emilsson V, Arch JR, de Groot RP et al (1999) Leptin treatment increases suppressors of cytokine signaling in central and peripheral tissues. FEBS Lett 455(1–2):170–174

    Article  PubMed  CAS  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Gatto L, Berlato C, Poli V et al (2004) Analysis of suppressor of cytokine signaling (SOCS)-3 promoter responses to interferon-γ. J Biol Chem 279(14):13746–13754

    Article  PubMed  CAS  Google Scholar 

  • Gylvin T, Nolsoe R, Hansen T et al (2004) Mutation analysis of suppressor of cytokine signaling 3, a candidate gene in Type 1 diabetes and insulin sensitivity. Diabetologia 47(7):1273–1277

    Article  PubMed  CAS  Google Scholar 

  • Henkin L, Bergman RN, Bowden DW et al (2003) Genetic epidemiology of insulin resistance and visceral adiposity. The IRAS family study design and methods. Ann Epidemiol 13:211–217

    Article  PubMed  Google Scholar 

  • Heynsfield SB, Greenberg AS, Fujioka K et al (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose escalation trial. JAMA 282(16):1568–1575

    Article  Google Scholar 

  • Hofbauer KG (2002) Molecular pathways to obesity. Int J Obes Supp2:S18–S27

    Article  Google Scholar 

  • Holter K, Wermter AK, Scherag A et al (2007) Analysis of sequence variations in the suppressor of cytokine signaling (SOCS)-3 gene in extremely obese children and adolescents. BMC Med 8:21

    Article  Google Scholar 

  • Howard JK, Flier JS (2006) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17(9):365–371

    Article  PubMed  CAS  Google Scholar 

  • Jamshidi Y, Snieder H, Wang X et al (2006) Common polymorphisms in SOCS3 are not associated with body weight, insulin sensitivity or lipid profile in normal female twins. Diabetologia 49(2):306–310

    Article  PubMed  CAS  Google Scholar 

  • Kile BT, Alexander WS (2001) The suppresors of cytokine signaling (SOCS). Cell Mol Life Sci 58(11):1627–1635

    Article  PubMed  CAS  Google Scholar 

  • Larsen L, Ropke C (2002) Suppressors of cytokine signalling: SOCS. APMIS 110:833–844

    Article  PubMed  CAS  Google Scholar 

  • Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol 192(1):29–36

    CAS  Google Scholar 

  • Munzberg H, Myers MG Jr (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8(5):566–570

    Article  PubMed  Google Scholar 

  • Ni R, Ihara K, Miyako K et al (2006) Association study of polymorphisms in SOCS family genes with type 1 diabetes mellitus. Int J Immunogenet 33(1):7–10

    Article  PubMed  CAS  Google Scholar 

  • Norris JM, Langefeld CD, Scherzinger AL et al (2005) Quantitative trait loci for abdominal fat and BMI in Hispanic–Americans and African–Americans: the IRAS family study. Int J Obes (Lond) 29:67–77

    Article  CAS  Google Scholar 

  • O’Connell JR (2000) Zero-recombinant haplotyping: applications to fine mapping using SNPs. Genet Epidemiol 19S1:S64–S70

    Google Scholar 

  • O’Connell JR, Weeks DE (1998) Pedcheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 65:259–266

    Article  Google Scholar 

  • Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and Type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  • Pacini G, Bergman RN (1986) MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput Methods Programs Biomed 23(2):113–122

    Article  PubMed  CAS  Google Scholar 

  • Rathinam C, Klein C (2007) Transcriptional repressor Gfi1 integrates cytokine-receptor signals controlling B-cell differentiation. PLoS ONE 2(3):e306

    Article  PubMed  Google Scholar 

  • Rich SS, Bowden DW, Haffner SM, Norris JM, Saad MF, Mitchell BD, Rotter JI, Langefeld CD, Wagenknecht LE, Bergman RN (2004) Identification of quantitative trait loci for glucose homeostasis: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes 53:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Tzameli I, Bjorbaek C et al (2004) Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem 279(33):34733–34740

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Cave B, Inouye K et al (2006) Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes 55(3):699–707

    Article  PubMed  CAS  Google Scholar 

  • Sutton BS, Langefeld CD, Campbell JK et al (2006) Genetic mapping of a 17q chromosomal region linked to obesity phenotypes in the IRAS family study. Int J Obes (Lond) 30(9):1433–1441

    Article  CAS  Google Scholar 

  • Tan JC, Rabkin R (2005) Suppressors of cytokine signaling in health and disease. Pediatri Nephrol 20:567–575

    Article  Google Scholar 

  • Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutri 100(2):227–235

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by NIH grants HL060894, HL060931, HL060944, HL061019, and HL061210. We would like to acknowledge also the helpful suggestions of the reviewers of Human Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Bowden.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbert, M.E., Langefeld, C.D., Ziegler, J. et al. Polymorphisms near SOCS3 are associated with obesity and glucose homeostasis traits in Hispanic Americans from the Insulin Resistance Atherosclerosis Family Study. Hum Genet 125, 153–162 (2009). https://doi.org/10.1007/s00439-008-0608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-008-0608-3

Keywords

Navigation