Skip to main content

Advertisement

Log in

Do climatic and physical factors affect populations of the blow fly Chrysomya megacephala and house fly Musca domestica?

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The blow fly, Chrysomya megacephala (Fabricius), and house fly, Musca domestica L., are medically and forensically important flies. The population dynamic of these flies is essential for both control and forensical aspects. The aim of this study was to investigate the climatic and physical factors affecting the population trend of both species in Chiang Mai province, northern Thailand, using the Geographic Information System (GIS). Based on systematic random sampling, 18 study sites were selected in three districts (Mueang Chiang Mai, Mae Rim, and Hang Dong). Six land use types were involved in the study sites, i.e., disturbed mixed deciduous, mixed deciduous forest, mixed orchard, lowland village, city, and paddy field. Adult flies were sampled every 2 weeks using an in-house prototype reconstructable funnel trap. Two types of bait were used—one with fresh beef viscera for luring M. domestica and the other with 1-day tainted beef viscera for luring C. megacephala. Collections were conducted from May 2009 to May 2010, and analysis of climatic factors (temperature, relative humidity, and light intensity) was carried out. Correlation bivariate analysis was performed initially to determine the relationship between climatic factors and the number of flies. Consequently, an ordinary co-kriging approach, in ArcGIS 9.2, was performed to predict the spatial distribution of flies with land use and climatic factors as co-variables. A total of 63,158 flies were captured, with C. megacephala being the most common species collected (68.37%), while only 1.3% were M. domestica, thus proving that C. megacephala was the most abundant species in several land use types. A significantly higher number of females than males was found in both species. Fly populations can be collected throughout most of the year with a peak in late summer, which shows a positive relation to temperature but negative correlation with relative humidity. C. megacephala was predicted to be abundant in every land use type, from lowland to forested areas, while the density of house fly was association with altitude and land use types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson DL, Sedgley M, Short JRT, Allwood AJ (1982) Insect pollination of mango in northern Australia Mangifera indica, includes Apis mellifera. Aust J Agric Res 33:541–548

    Article  Google Scholar 

  • Avancini RM, Silveira GA (2000) Age structure and abundance in populations of muscoid flies from a poultry facility in Southeast Brazil. Mem Inst Oswaldo Cruz 95:259–264

    Article  PubMed  CAS  Google Scholar 

  • Black WC, Krafsur ES (1986) Seasonal breeding structure in house fly, Musca domestica L., populations. Heredity 56:289–298

    Article  Google Scholar 

  • Bohart GE, Gressitt JL (1951) Filth-inhabiting flies of Guam. Bull Bernice P Bishop Mus 204:1–151

    Google Scholar 

  • Bong LJ, Zairi J (2009) Temporal changes in the abundance of Musca domestica Linn (Diptera: Muscidae) in poultry farms in Penang, Malaysia. Trop Biomed 26:140–148

    Google Scholar 

  • Brooker S, Clarke S, Njagi JK, Polack S, Nugo B, Estambale B, Muchiri E, Magnussen P, Cox J (2004) Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health 9:757–766

    Article  PubMed  Google Scholar 

  • Bunchu N, Sukontason KL, Olson JK, Kurahashi H, Sukontason K (2008) Behavioral responses of Chrysomya megacephala to natural products. Parasitol Res 102:419–429

    Article  PubMed  Google Scholar 

  • Butler JF, Garcia-Maruniak A, Meek F, Maruniak JE (2010) Wild Florida house flies (Musca domestica) as carriers of pathogenic bacteria. Florida Entomol 93:218–223

    Article  Google Scholar 

  • Echeverria P, Harrison BA, Tirapat C, McFarland A (1983) Flies as a source of enteric pathogens in a rural village in Thailand. Appl Environ Microbiol 46:32–36

    PubMed  CAS  Google Scholar 

  • Eisen L, Lozano-Fuentes S (2009) Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. PLoS Negl Trop Dis 3:e411

    Article  PubMed  Google Scholar 

  • Feliciangeli MD (2004) Natural breeding places of phlebotomine sandflies. Med Vet Entomol 18:71–80

    Article  PubMed  CAS  Google Scholar 

  • Gilles J, David JF, Duvallet G, Tillard E (2008) Potential impacts of climate change on stable flies, investigated along an altitudinal gradient. Med Vet Entomol 22:74–81

    Article  PubMed  CAS  Google Scholar 

  • Goff ML, Flynn MM (1991) Determination of postmortem interval by arthropod succession: a case study from the Hawaiian Islands. J Forensic Sci 36:607–614

    PubMed  CAS  Google Scholar 

  • Goff ML, Omori AI, Gunatilake K (1988) Estimation of postmortem interval by arthropod succession. Three case studies from the Hawaiian Islands. Am J Forensic Med Pathol 9:220–225

    Article  PubMed  CAS  Google Scholar 

  • Greenberg B (1973) Flies and disease. Biological and disease transmission, vol II. Princeton University Press, New Jersey

    Google Scholar 

  • Guernaoui S, Bounezzough A, Laamrani A (2006) Altitudinal structuring of sand flies (Diptera: Psychodidae) in the High-Atlas mountains (Morocco) and its relation to the risk of leishmaniasis transmission. Acta Trop 97:346–351

    Article  PubMed  CAS  Google Scholar 

  • Gunatilake K, Goff ML (1989) Detection of organophosphate poisoning in a putrefying body by analyzing arthropod larvae. J Forensic Sci 34:714–716

    PubMed  CAS  Google Scholar 

  • Hackenberger BK, Jaric D, Krcmar S (2009) Distribution of tabanids (Diptera: Tabanidae) along a two-sides altitudinal transect. Environ Entomol 38:1600–1607

    Article  PubMed  Google Scholar 

  • Hewitt CG (1907) The structure, development, and bionomics of the house fly, Musca domestica, Linn. Quart J Micr Sci 51:395–448

    Google Scholar 

  • Kassem HA, El-Sayed YA, Baz MM, Kenawy MA, El Sawaf BM (2009) Climatic factors influencing the abundance of Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) in the Nile Delta. J Egypt Soc Parasitol 39:305–316

    PubMed  Google Scholar 

  • Lertthamnongtham S, Sukontason KL, Sukontason K, Piangjai S, Choochote W, Vogtsberger RC, Olson JK (2003) Seasonal fluctuations in populations of the two most forensically important fly species in northern Thailand. Ann Trop Med Parasitol 97:87–91

    Article  PubMed  CAS  Google Scholar 

  • Lysyk TJ (1993) Seasonal abundance of stable flies and house flies (Diptera: Muscidae) in dairies in Alberta, Canada. J Med Entomol 30:888–895

    PubMed  CAS  Google Scholar 

  • Nazni WA, Seleena B, Lee H, Jeffery J, Rogayah T, Sofian M (2005) Bacteria fauna from the house fly, Musca domestica (L.). Trop Biomed 22:225–231

    PubMed  CAS  Google Scholar 

  • Noorman N, Den Otter CJ (2002) Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L. J Chem Ecol 28:1819–1829

    Article  PubMed  CAS  Google Scholar 

  • Nurita AT, Abu HA, Nur AH (2008) Species composition surveys of synanthropic fly populations in northern peninsular Malaysia. Trop Biomed 25:145–153

    PubMed  CAS  Google Scholar 

  • Reigada C, Godoy WAC (2005) Seasonal fecundity and body size in Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae). Neotrop Entomol 34:163–168

    Article  Google Scholar 

  • Rogers D, Williams B (1993) Monitoring trypanosomiasis in space and time. Parasitology 106(Suppl):S77–S92

    Article  PubMed  Google Scholar 

  • Rutto JJ, Karuga JW (2009) Temporal and spatial epidemiology of sleeping sickness and use of geographical information system (GIS) in Kenya. J Vector Borne Dis 46:18–25

    PubMed  Google Scholar 

  • Semakula LM, Taylor RA, Pitts CW (1989) Flight behavior of Musca domestica and Stomoxys calcitrans (Diptera: Muscidae) in a Kansas dairy barn. J Med Entomol 26:501–509

    PubMed  CAS  Google Scholar 

  • Simsek FM, Alten B, Caglar SS, Ozbel Y, Aytekin AM, Kaynas S, Belen A, Kasap OE, Yaman M, Rastgeldi S (2007) Distribution and altitudinal structuring of phlebotomine sand flies (Diptera: Psychodidae) in southern Anatolia, Turkey: their relation to human cutaneous leishmaniasis. J Vector Ecol 32:269–279

    Article  PubMed  Google Scholar 

  • Spradbery JP (1979) The reproductive status of Chrysomya species (Diptera: Calliphoridae) attracted to liver-baited blow fly traps in Papua New Guinea. J Aust Entomol Soc 18:57–61

    Article  Google Scholar 

  • Strong-Gunderson JM, Leopold RA (1989) Cryobiology of Musca domestica: supercooling capacity and low-temperature tolerance. Environ Entomol 18:756–762

    Google Scholar 

  • Sucharit S, Tumrasvin W, Vutikes S (1976) A survey on house flies in Bangkok and neighboring provinces. Southeast Asian J Trop Med Public Health 7:85–90

    Google Scholar 

  • Sukontason K, Narongchai P, Kanchai C, Vichairat K, Sribanditmongkol P, Bhoopat T, Kurahashi H, Chockjamsai M, Piangjai S, Bunchu N, Vongvivach S, Samai W, Chaiwong T, Methanitikorn R, Ngern-klun R, Sripakdee D, Boonsriwong W, Siriwattanarungsee S, Srimuangwong C, Hanterdsith B, Chaiwan K, Srisuwan C, Upakut S, Moopayak K, Vogtsberger RC, Olson JK, Sukontason KL (2007a) Forensic entomology cases in Thailand: a review of cases from 2000 to 2006. Parasitol Res 101:1417–1423

    Article  PubMed  Google Scholar 

  • Sukontason KL, Bunchoo M, Khantawa B, Piangjai S, Rongsriyam Y, Sukontason K (2007b) Comparison between Musca domestica and Chrysomya megacephala as carriers of bacteria in northern Thailand. Southeast Asian J Trop Med Public Health 38:38–44

    PubMed  Google Scholar 

  • Sukontason K, Piangjai S, Siriwattanarungsee S, Sukontason KL (2008) Morphology and developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in Thailand: application in forensic entomology. Parasitol Res 102:1207–1216

    Article  PubMed  Google Scholar 

  • Sulaiman S, Sohadi AR, Yunus H, Iberahim R (1988) The role of some cyclorrhaphan flies as carriers of human helminths in Malaysia. Med Vet Entomol 2:1–6

    Article  PubMed  CAS  Google Scholar 

  • Sung IH, Lin MY, Chang CH, Cheng AS, Chen WS (2006) Pollinators and their behaviors on mango flowers in southern Taiwan. Formosan Entomol 26:161–170

    Google Scholar 

  • Taye A, Alemayehu W, Melese M, Geyid A, Mekonnen Y, Tilahun D, Asfaw T (2007) Seasonal and altitudinal variations in fly density and their associated with the occurrence of trachoma, in the Gurage zone of central Ethiopia. Ann Trop Med Parasitol 101:441–448

    Article  PubMed  CAS  Google Scholar 

  • Taylor D, Berkebile D (2006) Comparative efficiency of six stable fly (Diptera: Muscidae) traps. J Econ Entomol 99:1414–1419

    Article  Google Scholar 

  • Tonnang HE, Kangalawe RY, Yanda PZ (2010) Predicting and mapping malaria under climatic change scenarios: the potential redistribution of malaria vectors in Africa. Malaria J 9:111

    Article  Google Scholar 

  • Tumrasvin W, Shinonaga S (1977) Studies on medically important flies in Thailand. III. Report of species belonging to the genus Musca Linne, including the taxonomic key (Diptera: Muscidae). Bull Tokyo Med Dent Univ 24:209–218

    PubMed  CAS  Google Scholar 

  • Tumrasvin W, Sucharit S, Kano R (1978) Studies on medically important flies in Thailand. IV. Altitudinal distribution of flies belonging to Muscidae and Calliphoridae in Doi Indhanondh Mountain, Chiengmai, in early summer season. Bull Tokyo Med Dent Univ 25:77–81

    PubMed  CAS  Google Scholar 

  • Tumrasvin W, Kurahashi H, Kano R (1979) Studies on medically important flies in Thailand VII. Report on 42 species of calliphorid flies, including the taxonomic keys (Diptera: Calliphoridae). Bull Tokyo Med Dent Univ 26:243–272

    PubMed  CAS  Google Scholar 

  • Upakut S, Sukontason KL, Bunchu N, Sukontason K (2007) Behavioral response of house fly, Musca domestica Linnaeus (Diptera: Muscidae), to olfactory stimuli with dual-choice wind tunnel. The Joint International Tropical Medicine Meeting, 30 November, Bangkok, Thailand

  • West L (1951) The housefly, its natural history, medical importance, and control. Corn-Stock, Ithaca

    Google Scholar 

  • WHO (1986) Vector control series. The housefly. Training and information guide. WHO, Geneva

    Google Scholar 

  • William C (2004) Biology of disease vector. Elsevier, Amsterdam

    Google Scholar 

  • Winpisinger KA, Ferketich AK, Berry RL, Moeschberger ML (2005) Spread of Musca domestica (Diptera: Muscidae), from two caged layer facilities to neighboring residences in rural Ohio. J Med Entomol 42:732–738

    Article  PubMed  Google Scholar 

  • Zumpt F (1965) Myiasis in man and animals in the old world. Butterworths, London

    Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Thailand Research Fund (RMU5080036 to KS), Royal Golden Jubilee Ph.D. Program (PHD/0221/2548 to RN) and Forensic Center of Chiang Mai University (to KS). We thank the Faculty of Medicine, Chiang Mai University and Geo-Informatics and Space Technology Development Agency, Northern Region, Thailand for data and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kom Sukontason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngoen-klan, R., Moophayak, K., Klong-klaew, T. et al. Do climatic and physical factors affect populations of the blow fly Chrysomya megacephala and house fly Musca domestica?. Parasitol Res 109, 1279–1292 (2011). https://doi.org/10.1007/s00436-011-2372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2372-x

Keywords

Navigation