Skip to main content

Advertisement

Log in

T-type calcium channels blockers as new tools in cancer therapies

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

T-type calcium channels are involved in a multitude of cellular processes, both physiological and pathological, including cancer. T-type channels are also often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation, migration, and survival. Here, we review the recent literature and discuss the controversies, supporting the role of T-type Ca2+ channels in cancer cells and the proposed use of channels blockers as anticancer agents. A growing number of reports show that pharmacological inhibition or RNAi-mediated downregulation of T-type channels leads to inhibition of cancer cell proliferation and increased cancer cell death. In addition to a single agent activity, experimental results demonstrate that T-type channel blockers enhance the anticancer effects of conventional radio- and chemotherapy. At present, the detailed biological mechanism(s) underlying the anticancer activity of these channel blockers is not fully understood. Recent findings and ideas summarized here identify T-type Ca2+ channels as a molecular target for anticancer therapy and offer new directions for the design of novel therapeutic strategies employing channels blockers. Physiological relevance: T-type calcium channels are often aberrantly expressed or deregulated in cancer cells, supporting their proliferation, survival, and resistance to treatment; therefore, T-type Ca2+ channels could be attractive molecular targets for anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alison MR, Lin W-R, Lim SML, Nicholson LJ (2012) Cancer stem cells: in the line of fire. Cancer Treat Rev 38(6):589–598

    Article  CAS  PubMed  Google Scholar 

  2. Amorino GP, Parsons SJ (2004) Neuroendocrine cells in prostate cancer. Crit Rev Eukaryot Gene Expr 14(4):287–300

    Article  CAS  PubMed  Google Scholar 

  3. Atlas D (2010) Signaling role of the voltage-gated calcium channel as the molecular on/off-switch of secretion. Cell Signal 22(11):1597–1603

    Article  CAS  PubMed  Google Scholar 

  4. Balk SD (1971) Calcium as a regulator of the proliferation of normal, but not of transformed, chicken fibroblasts in a plasma-containing medium. Proc Natl Acad Sci U S A 68(2):271–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  CAS  PubMed  Google Scholar 

  6. Bertolesi GE, Jollimore CAB, Shi C, Elbaum L, Denovan-Wright EM, Barnes S, Kelly MEM (2003) Regulation of alpha1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation. Eur J Neurosci 17(9):1802–1810

    Article  PubMed  Google Scholar 

  7. Bertolesi GE, Shi C, Elbaum L, Jollimore C, Rozenberg G, Barnes S, Kelly MEM (2002) The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol Pharmacol 62(2):210–219

    Article  CAS  PubMed  Google Scholar 

  8. Bilici D, Akpinar E, Gürsan N, Dengiz GO, Bilici S, Altaş S (2001) Protective effect of T-type calcium channel blocker in histamine-induced paw inflammation in rat. Pharmacol Res Off J Ital Pharmacol Soc 44(6):527–531

    CAS  Google Scholar 

  9. Boynton AL, Whitfield JF, Isaacs RJ, Tremblay RG (1977) Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Res 37(8 Pt 1):2657–2661

    CAS  PubMed  Google Scholar 

  10. Bringmann A, Schopf S, Reichenbach A (2000) Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells. J Neurophysiol 84(6):2975–2983

    CAS  PubMed  Google Scholar 

  11. Capiod T (2011) Cell proliferation, calcium influx and calcium channels. Biochimie 93(12):2075–2079

    Article  CAS  PubMed  Google Scholar 

  12. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310(5977):501–502

    Article  CAS  PubMed  Google Scholar 

  13. Chemin J, Nargeot J, Lory P (2004) Ca(v)3.2 calcium channels control an autocrine mechanism that promotes neuroblastoma cell differentiation. Neuroreport 15(4):671–675

    Article  CAS  PubMed  Google Scholar 

  14. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  15. Das A, Pushparaj C, Bahí N, Sorolla A, Herreros J, Pamplona R, Vilella R, Matias-Guiu X, Martí RM, Cantí C (2012) Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res 25(2):200–212

    Article  CAS  PubMed  Google Scholar 

  16. Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, Pamplona R, Matias-Guiu X, Martí R, Cantí C (2013) T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res 26(6):874–85

    Google Scholar 

  17. Del Toro R, Levitsky KL, López-Barneo J, Chiara MD (2003) Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem 278(25):22316–22324

    Article  PubMed  Google Scholar 

  18. Di Sant’Agnese PA (2001) Neuroendocrine differentiation in prostatic carcinoma: an update on recent developments. Ann Oncol Off J Eur Soc Med Oncol / ESMO 12(Suppl 2):S135–140

    Article  Google Scholar 

  19. Dziegielewska B, Brautigan DL, Larner JM, Dziegielewski J (2013) T-type Ca2+ channel inhibition induces p53 dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Molecular Cancer Research: MCR. http://mcr.aacrjournals.org/content/early/2013/12/20/1541-7786.MCR-13-0485.abstract. Accessed 30 Dec 2013

  20. Eller P, Berjukov S, Wanner S, Huber I, Hering S, Knaus HG, Toth G, Kimball SD, Striessnig J (2000) High affinity interaction of mibefradil with voltage-gated calcium and sodium channels. Br J Pharmacol 130(3):669–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fallon MT (2013) Neuropathic pain in cancer. Br J Anaesth 111(1):105–111

    Article  CAS  PubMed  Google Scholar 

  22. Fearon IM, Randall AD, Perez-Reyes E, Peers C (2000) Modulation of recombinant T-type Ca2+ channels by hypoxia and glutathione. Pflügers Archiv Eur J Physiol 441(2-3):181–188

    Article  CAS  Google Scholar 

  23. Fisseler-Eckhoff A, Demes M (2012) Neuroendocrine tumors of the lung. Cancers 4(3):777–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fixemer T, Remberger K, Bonkhoff H (2002) Apoptosis resistance of neuroendocrine phenotypes in prostatic adenocarcinoma. Prostate 53(2):118–123

    Article  PubMed  Google Scholar 

  25. Flatters SJL, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109(1-2):150–161

    Article  CAS  PubMed  Google Scholar 

  26. Gackière F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Van Chuoï-Mariot MT, Mauroy B, Prevarskaya N, Mariot P (2008) CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283(15):10162–10173

    Article  PubMed  Google Scholar 

  27. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gray LS, Macdonald TL (2006) The pharmacology and regulation of T type calcium channels: new opportunities for unique therapeutics for cancer. Cell Calcium 40(2):115–120

    Article  CAS  PubMed  Google Scholar 

  29. Gray LS, Schiff D, Macdonald TL (2013) A model for the regulation of T-type Ca(2+) channels in proliferation: roles in stem cells and cancer. Expert Rev Anticancer Ther 13(5):589–595

    Article  CAS  PubMed  Google Scholar 

  30. Haverstick DM, Heady TN, Macdonald TL, Gray LS (2000) Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res 60(4):1002–1008

    CAS  PubMed  Google Scholar 

  31. Heady TN, Gomora JC, Macdonald TL, Perez-Reyes E (2001) Molecular pharmacology of T-type Ca2+ channels. Jpn J Pharmacol 85(4):339–350

    Article  CAS  PubMed  Google Scholar 

  32. Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, Rhim H, Choo DJ, Kim J, Lee JY (2008) T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett 18(14):3899–3901

    Article  CAS  PubMed  Google Scholar 

  33. Hirooka K, Bertolesi GE, Kelly MEM, Denovan-Wright EM, Sun X, Hamid J, Zamponi GW, Juhasz AE, Haynes LW, Barnes S (2002) T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J Neurophysiol 88(1):196–205

    CAS  PubMed  Google Scholar 

  34. Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M (2004) NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 309(1):193–199

    Article  CAS  PubMed  Google Scholar 

  35. Ischenko I, Seeliger H, Schaffer M, Jauch K-W, Bruns CJ (2008) Cancer stem cells: how can we target them? Curr Med Chem 15(30):3171–3184

    Article  CAS  PubMed  Google Scholar 

  36. Jaggi AS, Singh N (2012) Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 291(1-3):1–9

    Article  CAS  PubMed  Google Scholar 

  37. Jang, SJ, Choi HW, Choi DL, Cho S, Rim H.-K, Choi H.-E, Kim K-S, Huang M, Rhim H, Lee K-T, Lee JY (2013) In vitro cytotoxicity on human ovarian cancer cells by T-type calcium channel blockers. Bioorg Med Chem Lett 23(24):6656–62

    Google Scholar 

  38. Joksovic PM, Nelson MT, Jevtovic-Todorovic V, Patel MK, Perez-Reyes E, Campbell KP, Chen C-C, Todorovic SM (2006) CaV3.2 is the major molecular substrate for redox regulation of T-type Ca2+ channels in the rat and mouse thalamus. J Physiol 574(2):415–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24(6):719–736

    Article  CAS  PubMed  Google Scholar 

  40. Kang HB, Rim H-K, Park JY, Choi HW, Choi DL, Seo J-H, Chung K-S, Huh G, Kim J, Choo DJ, Lee K-T, Lee JY (2012) In vivo evaluation of oral anti-tumoral effect of 3,4-dihydroquinazoline derivative on solid tumor. Bioorg Med Chem Lett 22(2):1198–1201

    Article  CAS  PubMed  Google Scholar 

  41. Keir ST, Friedman HS, Reardon DA, Bigner DD, Gray LA (2013) Mibefradil, a novel therapy for glioblastoma multiforme: cell cycle synchronization and interlaced therapy in a murine model. J Neuro-oncol 111(2):97–102

    Article  CAS  Google Scholar 

  42. Knut and Alice Wallenberg Foundation (2013) Human protein atlas. www.proteinatlas.org. Accessed 15 Nov 2013

  43. Kundu JK, Surh Y-J (2008) Inflammation: gearing the journey to cancer. Mutat Res 659(1-2):15–30

    Article  CAS  PubMed  Google Scholar 

  44. Kwon SY, Bae YK, Gu MJ, Choi JE, Kang SH, Lee SJ, Kim A, Jung HR, Kang SH, Oh HK, Park JY (2013) Neuroendocrine differentiation correlates with hormone receptor expression and decreased survival in patients with invasive breast carcinoma. http://onlinelibrary.wiley.com/doi/10.1111/his.12306/abstract. Accessed 30 Dec 2013

  45. Lijnen P, Fagard R, Petrov V (1999) Mibefradil-induced inhibition of proliferation of human peripheral blood mononuclear cells. J Cardiovasc Pharmacol 33(4):595–604

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Zhang S-L, Wang N, Zhang B-B, Li M (2011) Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Investig 29(5):339–346

    Article  CAS  Google Scholar 

  47. Li Y, Liu S, Lu F, Zhang T, Chen H, Wu S, Zhuang H (2009) A role of functional T-type Ca2+ channel in hepatocellular carcinoma cell proliferation. Oncol Rep 22(5):1229–1235

    CAS  PubMed  Google Scholar 

  48. Life Technologies Corporation (2013) https://www.oncomine.com/resource/main.html#d:212;dso:geneOverex;dt:dataset;ec[2];epv:150001.151078,3508;et:over;f:2502825;g:8912;gt:boxplot;p:77321987;pg:1;pvf:3518,7696;scr:datasets;ss:all;v:17. Accessed 15 Nov 2013

  49. Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40(2):135–146

    Article  CAS  PubMed  Google Scholar 

  50. Louhivuori LM, Louhivuori V, Wigren H-K, Hakala E, Jansson LC, Nordström T, Castrén ML, Akerman KE (2013) Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells. Stem Cells Dev 22(8):1206–1219

    Article  CAS  PubMed  Google Scholar 

  51. Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D, Wu S (2008) T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium 43(1):49–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lu F, Chen H, Zhou C, Wu S (2005) Is there a role for T-type Ca2+ channel in glioma cell proliferation? Cell Calcium 38(6):593–595, author reply 597

    Article  CAS  PubMed  Google Scholar 

  53. Mariot P, Vanoverberghe K, Lalevee N, Rossier MF, Prevarskaya N (2002) Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277(13):10824–10833

    Article  CAS  PubMed  Google Scholar 

  54. Mehrke G, Zong XG, Flockerzi V, Hofmann F (1994) The Ca(++)-channel blocker Ro 40–5967 blocks differently T-type and L-type Ca++ channels. J Pharmacol Exp Ther 271(3):1483–1488

    CAS  PubMed  Google Scholar 

  55. Mishra SK, Hermsmeyer K (1994) Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res 75(1):144–148

    Article  CAS  PubMed  Google Scholar 

  56. Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, Alphonse G, Ardail D, Rodriguez-Lafrasse C, Magné N (2012) Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett 322(2):139–147

    Article  CAS  PubMed  Google Scholar 

  57. Monteith GR, Davis FM, Roberts-Thomson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287(38):31666–31673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7(7):519–530

    Article  CAS  PubMed  Google Scholar 

  59. Nebe B, Kunz F, Peters A, Rychly J, Noack T, Beck R (2004) Induction of apoptosis by the calcium antagonist mibefradil correlates with depolarization of the membrane potential and decreased integrin expression in human lens epithelial cells. Graefe’s Arch Clin Exp Ophthalmol = Albrecht Von Graefes Archiv Für Klinische Und Experimentelle Ophthalmologie 242(7):597–604

    Article  CAS  Google Scholar 

  60. Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316(6027):443–446

    Article  CAS  PubMed  Google Scholar 

  61. Nilius B, Talavera K, Verkhratsky A (2006) T-type calcium channels: the never ending story. Cell Calcium 40(2):81–88

    Article  CAS  PubMed  Google Scholar 

  62. Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316(6027):440–443

    Article  CAS  PubMed  Google Scholar 

  63. Oguri A, Tanaka T, Iida H, Meguro K, Takano H, Oonuma H, Nishimura S, Morita T, Yamasoba T, Nagai R, Nakajima T (2010) Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes. Am J Physiol Cell Physiol 298(6):C1414–1423

    Article  CAS  PubMed  Google Scholar 

  64. Ohkubo T, Yamazaki J (2012) T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol 41(1):267–275

    CAS  PubMed  Google Scholar 

  65. Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wurster RD (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37(2):105–119

    Article  CAS  PubMed  Google Scholar 

  66. Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40(2):253–259

    Article  CAS  PubMed  Google Scholar 

  67. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161

    CAS  PubMed  Google Scholar 

  68. Perez-Reyes E, Van Deusen AL, Vitko I (2009) Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs. J Pharmacol Exp Ther 328(2):621–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Pluteanu F, Cribbs LL (2009) T-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes. Am J Physiol Heart Circ Physiol 297(4):H1304–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  71. Pottle J, Sun C, Gray L, Li M (2013) Exploiting MCF-7 cells’ calcium dependence with Interlaced Therapy. J Cancer Ther 04(07):32–40

    Article  Google Scholar 

  72. Rim H-K, Lee H-W, Choi IS, Park JY, Choi HW, Choi J-H, Cho Y-W, Lee JY, Lee K-T (2012) T-type Ca2+ channel blocker, KYS05047 induces G1 phase cell cycle arrest by decreasing intracellular Ca2+ levels in human lung adenocarcinoma A549 cells. Bioorg Med Chem Lett 22(23):7123–7126

    Article  CAS  PubMed  Google Scholar 

  73. Rodríguez-Gómez JA, Levitsky KL, López-Barneo J (2012) T-type Ca2+ channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal. Am J Physiol Cell physiol 302(3):C494–504

    Article  PubMed  Google Scholar 

  74. Santoni G, Santoni M, Nabissi M (2012) Functional role of T-type calcium channels in tumour growth and progression: prospective in cancer therapy. Br J Pharmacol 166(4):1244–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Schmitt R, Clozel JP, Iberg N, Bühler FR (1996) Prevention of neointima formation by mibefradil after vascular injury in rats: comparison with ACE inhibition. Cardiovasc Drugs Ther / Sponsored Int Soc Cardiovasc Pharmacother 10(2):101–105

    Article  CAS  Google Scholar 

  76. Seigel GM, Hackam AS, Ganguly A, Mandell LM, Gonzalez-Fernandez F (2007) Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 13(2007):823–832

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sekiguchi F, Kawabata A (2013) T-type calcium channels: functional regulation and implication in pain signaling. J Pharmacol Sci 122(4):244–250

    Article  CAS  PubMed  Google Scholar 

  78. Sheehan JP, Xu Z, Popp B, Kowalski L, Schlesinger D (2013) Inhibition of glioblastoma and enhancement of survival via the use of mibefradil in conjunction with radiosurgery. J Neurosurg 118(4):830–837

    Article  CAS  PubMed  Google Scholar 

  79. Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, Schultz PG, Powell SM, Moskaluk CA, Frierson HF Jr, Hampton GM (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61(20):7388–7393

    CAS  PubMed  Google Scholar 

  80. Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB, Li M (2008) Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett 267(1):116–124

    Article  CAS  PubMed  Google Scholar 

  81. Taylor JT, Zeng X-B, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JAS, Sikka SS, Li M (2008) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol WJG 14(32):4984–4991

    Article  CAS  Google Scholar 

  82. Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP (1999) Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′ CpG island in human tumors. Cancer Res 59(18):4535–4541

    CAS  PubMed  Google Scholar 

  83. Trepel JB (2003) Ion channels as molecular targets in prostate cancer. Clin Prostate Cancer 2(3):188–189

    Article  PubMed  Google Scholar 

  84. Valerie NCK, Dziegielewska B, Hosing AS, Augustin E, Gray LS, Brautigan DL, Larner JM, Dziegielewski J (2013) Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol 85(7):888–897

    Article  CAS  PubMed  Google Scholar 

  85. Vanoverberghe K, Vanden Abeele F, Mariot P, Lepage G, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2004) Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ 11(3):321–330

    Article  CAS  PubMed  Google Scholar 

  86. Viana F, Van den Bosch L, Missiaen L, Vandenberghe W, Droogmans G, Nilius B, Robberecht W (1997) Mibefradil (Ro 40–5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22(4):299–311

    Article  CAS  PubMed  Google Scholar 

  87. Wang D, Hirase T, Inoue T, Node K (2006) Atorvastatin inhibits angiotensin II-induced T-type Ca2+ channel expression in endothelial cells. Biochem Biophys Res Commun 347(2):394–400

    Article  CAS  PubMed  Google Scholar 

  88. Wang L, Bhattacharjee A, Zuo Z, Hu F, Honkanen RE, Berggren PO, Li M (1999) A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic beta-cell death. Endocrinology 140(3):1200–1204

    CAS  PubMed  Google Scholar 

  89. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y, Cribbs LL, Satin J (2000) Arachidonic acid modulation of alpha1H, a cloned human T-type calcium channel. Am J Physiol Heart Circ Physiol 278(1):H184–193

    CAS  PubMed  Google Scholar 

  91. Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, Tao J (2012) Inhibition of T-type Ca(2+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 166(4):1247–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the University of Virginia P30 CA44579, by a pilot funding from the James and Rebecca Craig Fund (to JD), and by the University of Virginia Department of Radiation Oncology George P. Amorino pilot grant (to BD and JD).

Conflict of interest

Dr. Lloyd S. Gray is a cofounder of and consultant to Tau Therapeutics LLC. Dr. Jaroslaw Dziegielewski has received research contract funding from Tau Therapeutics LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Dziegielewski.

Additional information

This article is published as part of the Special Issue on T-type (Cav3) calcium channels in health and disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziegielewska, B., Gray, L.S. & Dziegielewski, J. T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch - Eur J Physiol 466, 801–810 (2014). https://doi.org/10.1007/s00424-014-1444-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1444-z

Keywords

Navigation