Skip to main content

Advertisement

Log in

Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Dietary nitrate supplementation, which enhances nitric oxide (NO) bioavailability, has previously been shown to contribute to improved exercise performance by reducing both oxygen cost and energy expenditure. In contrast, previous studies have indicated that NO can lower force production in vitro. To examine the role of dietary nitrates in regulating force generation under normal physiological conditions, we undertook an extended nitrate supplementation regime and determined force output and energy cost with a repeated isometric maximum voluntary contraction (MVC) protocol. In a double-blind, randomized, crossover design, eight participants received 0.5 l/day of nitrate-rich (BR) or nitrate-depleted (PL) beetroot juice for 15 days and completed an exercise protocol consisting of 50 MVCs at 2.5 h, 5 days and 15 days after the beginning of the supplementation period. No significant reduction in force output was determined for BR relative to PL for the peak contraction, the mean or the end force, and no significant time effect was found over the course of the supplementation period. There was a reduction in the mean PCr cost of exercise averaged over the BR supplementation trials, but this did not reach statistical significance for end exercise (BR 15.10 ± 4.14 mM, PL 17.10 ± 5.34 mM, P = 0.06) or the mean throughout the protocol (BR 15.96 ± 4.14 mM, PL 17.79 ± 4.51 mM, P = 0.06). However, a significant reduction in PCr cost per unit force output was found for BR at end exercise (P = 0.04). These results indicate that, under normal physiological conditions, increased NO bioavailability is not associated with a reduction of force-generating capability in human skeletal muscle and confirm that nitrate supplementation reduces the PCr cost of force production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aghadasi B, Reid MB, Hamilton SL (1997) Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation. J Biol Chem 272:25462–25467

    Article  Google Scholar 

  2. Albertini M, Lafortuna C, Aguggini G (1997) Effects of nitric oxide on diaphragmatic muscle endurance and strength in pigs. Exp Physiol 82:99–106

    PubMed  CAS  Google Scholar 

  3. Ameredes BT, Provenzano MA (1999) Influence of nitric oxide on vascular resistance and muscle mechanics during titanic contractions in situ. J Appl Physiol 87:142–151

    PubMed  CAS  Google Scholar 

  4. Andrade FHMR, Reid MB, Allen DG, Westerblad H (1998) Effect of nitric oxide on single skeletal muscle fibres from the mouse. J Physiol 509:577–586

    Article  PubMed  CAS  Google Scholar 

  5. Andrade FHMR, Reid MB, Westerblad H (2001) Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation. FASEB J 15:309–311

    PubMed  CAS  Google Scholar 

  6. Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, Wilkerson DP, Benjamin N, Jones AM (2010) Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 109:135–148

    Article  PubMed  CAS  Google Scholar 

  7. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, DiMenna FJ, Wilkerson DP, Benjamin N, Jones AM (2009) Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol 107:1144–1155

    Article  PubMed  CAS  Google Scholar 

  8. Bateman RM, Ellis CG, Freeman DJ (2002) Optimization of nitric oxide chemiluminescence operating conditions for measurement of plasma nitrite and nitrate. Clin Chem 48:570–573

    PubMed  CAS  Google Scholar 

  9. Bisnett T, Anzueto A, Andrade FH, Rodney GG Jr, Napier WR, Levine SM, Maxwell LC, Mureeba P, Derdak SD, Grisham MB, Jenkinson SG (1998) Effect of nitric acid synthase inhibitor on diaphragmatic function after resistive loading. Comp Biochem Physiol 119A:185–190

    CAS  Google Scholar 

  10. Brotto MAP, Nosek TM (1996) Hydrogen peroxide disrupts calcium release from the sarcoplasmic reticulum of rat skeletal muscle fibres. J Appl Physiol 81:731–737

    PubMed  CAS  Google Scholar 

  11. Cermak NM, Gibala MJ, van Loon LJ (2012) Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab 22:64–71

    PubMed  CAS  Google Scholar 

  12. Clementi E, Nisoli E (2005) Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism. Comp Biochem Physiol 142:102–110

    Article  Google Scholar 

  13. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT (2003) Nitrate reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505

    Article  PubMed  CAS  Google Scholar 

  14. Evangelista AM, Rao VS, Filo AR, Marozkina NV, Doctor A, Jones DR, Gaston B, Guilford WH (2010) Direct regulation of striated muscle myosins by nitric oxide and endogenous nitrosothiols. PLoS One 5:e11209

    Article  PubMed  Google Scholar 

  15. Ferguson SK, Hirai DM, Copp SW, Holdsworth CT, Allen JA, Jones AM, Musch TI, Poole DC (2012) Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol. doi:10.1113/jphysiol.2012.243121

  16. Folland JP, Maas H, Jones DA (2000) The influence of nitric oxide on in vivo human skeletal muscle properties. Acta Physiol Scand 169:141–148

    Article  PubMed  CAS  Google Scholar 

  17. Galler S, Hilber K, Gobesberger A (1997) Effects of nitric oxide on force-generating proteins of skeletal muscle. Pfleugers Arch 434:242–245

    Article  CAS  Google Scholar 

  18. Govoni M, Jansson EA, Weitzberg E, Lundberg JO (2008) The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19:333–337

    Article  PubMed  CAS  Google Scholar 

  19. Haycock JW, Jones P, Harris JB, Mantle D (1996) Differential susceptibility of human skeletal muscle proteins to free radical induced oxidative damage: a histochemical, immunocytochemical and electron microscopical study in vitro. Acta Neuropathol 92:331–340

    Article  PubMed  CAS  Google Scholar 

  20. Heunks LMA, Cody MJ, Geiger PC, Dekhuijzen PNR, Sieck GC (2001) Nitric oxide impairs Ca2+ activation and slows cross-bridge cycling kinetics in skeletal muscle. J Appl Physiol 91:2233–2239

    PubMed  CAS  Google Scholar 

  21. Hirschfield W, Moody MR, O’Brien WE, Gregg AR, Bryan RM Jr, Reid MB (2000) Nitric oxide release and contractile properties of skeletal muscle from mice deficient in type III NOS. Am J Physiol 278:R95–R100

    CAS  Google Scholar 

  22. Ignarro LJ (1989) Endothelium-derived nitric oxide: actions and properties. FASEB 3:31–36

    CAS  Google Scholar 

  23. Jansson EA, Huang L, Malkey R, Govoni M, Nihlén C, Olsson A, Stensdotter M, Petersson J, Holm L, Weitzberg E, Lundberg JO (2008) A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol 4:411–417

    Article  PubMed  CAS  Google Scholar 

  24. Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE (2003) Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol 553:589–599

    Article  PubMed  CAS  Google Scholar 

  25. Kemp GJ, Meyerspeer M, Moser E (2007) Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed 20:555–565

    Article  PubMed  CAS  Google Scholar 

  26. Kemp GJ, Taylor DJ, Radda GK (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed 6:66–72

    Article  PubMed  CAS  Google Scholar 

  27. Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372:546–548

    Article  PubMed  CAS  Google Scholar 

  28. Larsen FL, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E (2011) Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab 13:149–159

    Article  PubMed  CAS  Google Scholar 

  29. Larsen FL, Weitzberg E, Lundberg JO, Ekblom B (2007) Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol 191:59–66

    Article  CAS  Google Scholar 

  30. Larsen FL, Weitzberg E, Lundberg JO, Ekblom B (2010) Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med 48:342–347

    Article  PubMed  CAS  Google Scholar 

  31. Maréchal G, Gailly P (1999) Effects of nitric oxide on the contraction of skeletal muscle. Cell Mol Life Sci 55:1088–1102

    Article  PubMed  Google Scholar 

  32. Meszaros LG, Minarovic I, Zahradnikova A (1996) Inhibition of the skeletal muscle ryanodine receptor calcium release channel by nitric oxide. FEBS Lett 380:49–52

    Article  PubMed  CAS  Google Scholar 

  33. Minneci PC, Deans KJ, Shiva S, Zhi H, Banks SM, Kern S, Natanson C, Solomon SB, Gladwin MT (2008) Nitrite reductase activity of haemoglobin as a systemic nitric oxide generator mechanism to detoxify plasma haemoglobin produced during hemolysis. Am J Physiol Heart Circ Physiol 295:H743–H754

    Article  PubMed  CAS  Google Scholar 

  34. Modin A, Bjorne H, Herulf M, Alving K, Weitzberg E, Lundberg JO (2001) Nitrate-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol Scand 171:9–16

    PubMed  CAS  Google Scholar 

  35. Moopaner TR, Allen DG (2005) Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C. J Physiol 564:189–199

    Article  Google Scholar 

  36. Murrant CL, Frisbee JC, Barclay JK (1997) The effect of nitric oxide and endothelin on skeletal muscle contractility changes when stimulation is altered. Can J Physiol Pharmacol 75:414–422

    Article  PubMed  CAS  Google Scholar 

  37. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  38. Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by NO yields functionality active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512

    Article  PubMed  CAS  Google Scholar 

  39. Perkins WJ, Han Y-S, Sieck GC (1997) Skeletal muscle force and actomyosin ATPase activity reduced by nitric oxide donor. J Appl Physiol 83:1326–1332

    PubMed  CAS  Google Scholar 

  40. Powers SP, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  PubMed  CAS  Google Scholar 

  41. Reid MB (1998) Role of nitric oxide in skeletal muscle: synthesis, distribution, and functional importance. Acta Physiol Scand 162:401–409

    Article  PubMed  CAS  Google Scholar 

  42. Reid MB (2001) Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33:371–376

    Article  PubMed  CAS  Google Scholar 

  43. Reid MB (2001) Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90:724–731

    Article  PubMed  CAS  Google Scholar 

  44. Shiva S (2010) Mitochondria as metabolizers and targets of nitrite. Nitric Oxide 15:64–74

    Article  Google Scholar 

  45. Spiegelhalder B, Eisenbrand G, Preussmann R (1976) Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol 14:545–548

    Article  PubMed  CAS  Google Scholar 

  46. Stoyanovsky DA, Murphy TD, Anno PR, Kim YM, Salama G (1997) Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium 21:19–29

    Article  PubMed  CAS  Google Scholar 

  47. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1:77–94

    PubMed  CAS  Google Scholar 

  48. Taylor DJ, Styles P, Matthews PM, Arnold DA, Gadian DG, Bore P, Radda GK (1986) Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med 3:44–54

    Article  PubMed  CAS  Google Scholar 

  49. van den Broek NMA, De Feyter HMML, Graaf LD, Nicolay K, Prompers JJ (2007) Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. Am J Physiol 293:C228–C237

    Article  Google Scholar 

  50. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  PubMed  CAS  Google Scholar 

  51. Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, Benjamin N, Winyard PG, Jones AM (2010) Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol 299:R1121–R1131

    Article  PubMed  CAS  Google Scholar 

  52. Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM (2011) Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol 589:5517–5528

    PubMed  CAS  Google Scholar 

  53. Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MCR (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun 249:767–772

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Fulford.

Additional information

Physiological relevance: these results indicate that, under normal physiological conditions, dietary nitrate supplementation is not associated with a reduction of force-generating capability in human skeletal muscle but reduces the PCr cost of force production.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulford, J., Winyard, P.G., Vanhatalo, A. et al. Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions. Pflugers Arch - Eur J Physiol 465, 517–528 (2013). https://doi.org/10.1007/s00424-013-1220-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1220-5

Keywords

Navigation